Measurement Guide and Programming
Examples

Agilent Technologies
PSA Series Spectrum Analyzers

This guide documents firmware revision A.03.xx
This manual provides documentation for the following instruments:

E4440A (3 Hz - 26.5 GHz)
E4443A (3 Hz - 6.7 GHz)
E4445A (3 Hz - 13.2 GHz)
E4446A (3 Hz - 44 GHz)
E4448A (3 Hz - 50 GHZz)

Agilent Technologies

Manufacturing Part Number: E4440-90063
Supersedes: E4440-90045

Printed in USA
May 2002

© Copyright 2001, 2002 Agilent Technologies, Inc.

The information contained in this document is subject to change
without notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent
Technologies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about
Agilent PSA spectrum analyzers, including firmware upgrades and
application information, see: http://www.agilent.com/find/psa.

Contents

1. Using This Document

2. Comparing Two Signals: Frequency and Amplitude

Comparing Signals on the Same SCreen i, 10
Signals with Constant Levels (using Marker Delta). 10
Signals with Varying Levels (using Delta Pair) 12

Comparing Signals notonthe Same Screen 14

3. Measuring a Low-Level Signal

Reducing Input Attenuation. 17
Decreasing the Resolution Bandwidth. 19
Using the Average Detector and Increased Sweep Time 21
Trace AVEraging. . .. o v e 23

4. Resolving Signals
Separating Equal-Amplitude Signals. 28
Finding a Small Signal Hidden by a Larger Signal 30

5. Tracking a Drifting Signal
Tracking a Signal 35
Measuring a Source’'s Drift. 37

6. Making Distortion Measurements

Identifying Distortion from the Analyzer 41
Identifying Harmonic Distortion Products. 41
Measuring the Analyzer’'s Third-Order Intermodulation Distortion 43

Measuring Harmonics and Harmonic Distortion 45

7. Measuring Noise Signals

Measuring Noise at a Single Frequency 51
Measuring Signal-to-Noise Levels 53
Measuring Total Noise PoOwWer. e e 55

8. Measuring the Power of Digital Signals

Making Power Measurements on Burst Signals 59
Making Statistical Power Measurements (CCDF) 63
Making Measurements of Adjacent Channel Power (ACP) 66
Making Measurements of Multi-Carrier Power (MCP). 70

9. Managing Files
Creating a Directory (or sub-directory) e 75
Deleting Files. 76

)
+—
c
(<5}
+—
c
(@}
(&)
Y
o
Q
X
—

Contents

Deleting One File e 76
Deleting All Files and Directories from a Floppy Disk 76
Loading a File. 78
Renaming a File e 79
Copying a File. 80

10. Programming Examples

Examples Included: e 82
Information About These Examples i 82
Using Marker Peak Search e 83
EXxample: . .. 83
Saving and Recalling Instrument StateData. 86
EXample: . .. 86
Making an ACPR MeasurementincdmaOne. 90
EXxample: . .. 90
Performing Alignments and Getting Pass/Fail Results. 93
EXample: . .. 93
Saving Binary Trace Data (Requires Option B7J) 96
EXxample: . .. 96
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)....... 100
EXxample: . .. 100
Using C Over Socket LAN (UNIX) e 106
EXxample: . . . 106
Using C Over Socket LAN (Windows NT). e 126
EXample: . . . e 126
Using Java Programming Over Socket LAN 129
EXxample: . . . 129
Using the VXI Plug-N-Play Driver in LabView 138
EXample: . . . 138

juawnoo siy buisn

Using This Document

This document explains how to make spectrum analyzer
measurements.

Assumption You know the basics of spectrum analyzer operation, and the location
and function of front and rear panel keys and connectors. If not, refer to
the Getting Started guide.

For detailed information on analyzer functions, refer to the Reference
guide.

NOTE In this manual, preset means factory preset.

+—
c
[<5]
e
>
O
o
(m)]
N2
<
—
(o))
=
(2]
)

6 Chapter1

apmijdwy pue Aouanba.u4
sjeubis om] Bulaedwo)

)
s O
S
p =
5, ©
S
| <C
L ©
q=
©
P> >
&)
=
B ©
b S
o
E ©
S
i

Comparing Two Signals: Frequency and Amplitude

This chapter provides the following examples:
= “Comparing Signals on the Same Screen” on page 10

Signals you want
to compare

]

] |

/

You can compare two sighals whether they both appear on the screen
at the same time (as shown above), or not (as shown in the following
figure).

Frequency and Amplitude

“
<
<

2
v
g
—
D
[

=
<
o
e
o
&

8 Chapter 2

Comparing Two Signals: Frequency and Amplitude

= “Comparing Signals not on the Same Screen” on page 14

The ability to compare signals when only one can be displayed at a
time is useful for harmonic distortion tests, or any time narrow span
and bandwidth are necessary to measure low-level signals.

Signals you want
to compare

N\

.
T
@D
o]
c
@D
>
(@]
<
[ab)
> 4
3 3
>
3
=
2
<
o -
D

Chapter 2 9

Frequency and Amplitude

“
<
<

2

v
g

—
D
[

=
<
o
e
o

&

NOTE

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

Comparing Signals on the Same Screen

Signals with Constant Levels (using Marker Delta)
1. Preset the analyzer, then set the following:

= Center Frequency: 30 MHz
« Span: 50 MHz

2. Set the reference level to 10 dBm.
Press Amplitude Y Scale, Ref Level, 1, 0, dBm.
3. Activate the rear panel 10 MHz output.
Press System, Reference, 10 MHz Out (Press until On is underlined.)

4. Connect the analyzer’'s rear panel 10 Mz QUT (SW TCHED) to the
front-panel RF input.

5. Place a marker on the 10 MHz peak: Press Peak Search.

6. Anchor the first marker and activate a second marker at the same
position: Press Marker, Delta.

Note that the label on the first marker changes to 1R indicating that
it is the reference point.

7. Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 20 MHz peak).

Because delta marker is now the active function, both the active
function block and the marker annotation display the amplitude and
frequency difference between the markers, as shown in Figure 2-1.

8. Turn the markers off: Press Marker, Off.

Alternate Methods
Replace the keystrokes in steps 5 through 7 with either:

= Press Sweep, Single, Peak Search, Marker, Delta, Return (or Peak
Search), Next Peak.

(the Return hardkey is located directly below the softkeys)
Or

= Press Marker and use the knob to position the marker. Then press
Marker, Delta and position the second marker.

10 Chapter 2

Figure 2-1

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

Reading the Marker Delta Value

Marker a
10.000000 MHz
-55.24 dB |

| §
'l

g M\W “WM" W WMMW‘

o Vi

VBH 470 kHz plms

Chapter 2 11

.
T
@D
o]
c
@D
>
(@]
<
[ab)
> 4
3 3
>
3
=
2
<
o -
D

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

Signals with Varying Levels (using Delta Pair)

The Delta Marker function (described on page 10) anchors the reference
marker in both frequency and amplitude. The Delta Pair function,
described in this example, enables the reference marker to remain on
the trace, and lets you adjust either the reference marker or the delta
marker, or both.

1. Preset the analyzer, then set the following:

= Center Frequency: 30 MHz
« Span: 50 MHz

2. Set the reference level to 10 dBm.
Press Amplitude Y Scale, Ref Level, 1, 0, dBm.

3. With the rear panel 10 MHz output on (As described on page 10, in
Step 3.), connect the analyzer’s rear panel 10 Mz OQUT (SW TCHED)
to the front-panel RF input.

4. Place a marker on the 10 MHz peak: Press Peak Search.

5. Anchor the first marker and activate a second marker at the same
position: Press Marker, Delta.

6. Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 20 MHz peak).

The marker annotation shows the difference between the two peaks.
7. Remove the signal from the input.

Note that the reference marker remains anchored at the former
frequency and amplitude of the 10 MHz signal. The delta marker
stays on the trace and now shows the difference between the noise
level at the delta frequency and the original amplitude of the

10 MHz signal.

Frequency and Amplitude

“
<
<

2

v
g

—
D
[

=
<
o
e
o

&

8. Reconnect the signal, then reset the marker to a single marker on
the 10 MHz peak:

Press Marker, Normal, Peak Search.

Activate a second marker at the same position without anchoring the
first marker: Press Marker, Delta Pair.

9. Select the second marker: Press Delta Pair again (if required), to
underline A.

10.Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 30 MHz peak).

Because delta marker is the active function, both the active function
block and the marker annotation display the amplitude and
frequency difference between the markers (just as when using the

12 Chapter?2

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

Delta Marker function, as shown in Figure 2-1).
11.Select the reference marker: Press Delta Pair to select (underline) Ref.
12.Use the knob to move the reference marker to the 20 MHz peak.
Note that as you move the marker, it stays on the trace.

Now the active function block and the marker annotation display the
amplitude and frequency difference between the 20 MHz and
30 MHz peaks, as shown in Figure 2-2.

13.Disconnect the signal input. Note that both markers drop into the
noise.

14.Turn the markers off: Press Marker, Off.

Figure 2-2 Reading the Marker Delta Value

Relf Marker Freq
20.080000 MHz

e

ns

|
il

VBH 476 kHz

.
T
@D
o]
c
@D
>
(@]
<
[ab)
> 4
3 3
>
3
=
2
<
o -
D

Chapter 2 13

“
<
<

2

v
g

—
D
[

=
<
o
e
o

&

Frequency and Amplitude

Comparing Two Signals: Frequency and Amplitude
Comparing Signals not on the Same Screen

Comparing Signals not on the Same Screen
1. Preset the analyzer, then set the following:

= Center Frequency: 10 MHz
« Span: 5 MHz

2. Set the reference level to 10 dBm.
Press Amplitude Y Scale, Ref Level, 1, 0, dBm.

3. With the rear panel 10 MHz output on (As described on page 10, in
Step 3.), connect the analyzer’s rear panel 10 Mz QUT (SW TCHED)
to the front-panel RF input.

4. Place a marker on the 10 MHz peak: Press Peak Search.
Setting Center 5. Set the center frequency step size equal to the marker frequency (in

Frequency this example, 10 MHZz): Press Marker O, Mkr O CF Step.
Step Size

o

Activate the marker delta function: Press Marker, Delta.
7. Increase the center frequency by 10 MHz:
Press FREQUENCY, Center Freq, [.

Figure 2-3 shows the reference annotation for the delta marker (1R
at the left side of the display, indicating that the 10 MHz reference
signal is at a lower frequency than the frequency range currently
displayed.

The delta marker appears on the peak of the 20 MHz component.
The delta marker annotation displays the amplitude and frequency
difference between the 10 and 20 MHz signal peaks.

Figure 2-3 Delta Marker with Reference Signal Off-Screen
¥ Agilent 17:84:38 Sep 6, 2000

a Mkrl
Reference Annotation Ref 1@ dBm Atten 28 dB

Marker a
10.000000 MHz

'h'l4ﬂ"‘f|'|'1"IJi*tl'q[’rhqﬁ\‘fLJm.i‘m' m i IJWIWLJ M L'J|1|frL‘[\Hmljhh'llllbhllllyﬁ.lli'qul

14 Chapter?2

aT

|eubIS |9A91-MO e Bulinsea|n

©
|
2
(92]
©
>
(¢B]
o
o
-
(9]
(@)
[
=
>
[%2]
©
[<B]
=

CAUTION

Measuring a Low—Level Signal

The analyzer’s ability to measure a low-level signal is limited by
internally-generated noise. The measurement setup can be changed in
several ways to improve the analyzer’s sensitivity. Resolution
bandwidth settings, when properly adjusted, affect the level of internal
noise without affecting the signal amplitude.

This chapter provides the following examples:
« “Reducing Input Attenuation” on page 17

The input attenuator affects the level of a signal passing through the
instrument. If a signal is very close to the noise floor, reducing input
attenuation can bring the signal out of the noise.

Ensure that the total power of all input signals at the analyzer RF
input does not exceed +30 dBm (1 watt).

« “Decreasing the Resolution Bandwidth” on page 19

Resolution bandwidth settings affect the level of internal noise
without affecting the signal level. Decreasing the RBW by a decade
reduces the noise floor by 10 dB.

= “Using the Average Detector and Increased Sweep Time” on page 21

When the analyzer’s noise masks low-level signals, changing to the
average detector and increasing the sweep time smooths the noise
and improves the signal’s visibility. Slower sweeps are required to
increase the effectiveness of averaging in reducing noise variations.

< “Trace Averaging” on page 23

Averaging is a digital process in which each trace point is averaged
with the previous trace-point average.

16 Chapter3

Measuring a Low—Level Signal
Reducing Input Attenuation

Reducing Input Attenuation

CAUTION Ensure that the total power of all input signals at the analyzer RF
input does not exceed +30 dBm (1 watt).

1. Preset the analyzer, then set the following:

On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 300 MHz
= Amplitude: —-80 dBm = Span: 5 MHz
< RF Output: Oon

2. Set the reference level to —40 dBm.
Press Amplitude Y Scale, Ref Level, =4, 0, dBm.
3. Connect the signal source to the analyzer’'s RF input.

4. Move the desired peak (in this example, 300 MHz) to the center of
the display:

Press Peak Search, Marker O, Mkr O CF.

5. Reduce the span to 1 MHz (as shown in Figure 3-1):
Press Span, 1, MHz.
If necessary, re-center the peak.

6. Set the attenuation to 20 dB:

Press AMPLITUDE, Attenuation (press until Man is underlined), 2, 0,
dB.

Note that increasing the attenuation moves the noise floor closer to
the signal level.

A “#” mark appears next to the At t en annotation at the top of the
display, indicating that the attenuation is no longer coupled to other
analyzer settings.

7. To see the signal more clearly, set the attenuation to O dB.

Press Attenuation (press until Man is underlined), 0, dB (refer to
Figure 3-2).

CAUTION To protect the analyzer's RF input, use only the keypad to decrease the
attenuation. Do not use the Oor knob for this purpose.

CAUTION When you finish this example, increase the attenuation to protect the

Chapter 3 17

©
|
2
(92]
©
>
(¢B]
o
o
-
(9]
(@)
[
=
>
[%2]
©
[<B]
=

Figure 3-1

Figure 3-2

Measuring a Low—Level Signal
Reducing Input Attenuation

analyzer's RF input:

Either press Attenuation so that Auto is selected, or press Auto Couple.

Low-Level Signal

% Agilent 87:16:54 Oct 5, 2606

Atten 18 JB

Span s
1.000000000 MHz |

|
e ,.I""| i J‘LIN] .I"]HI |1N,-I,I II" | l'l,l | LN |l I Wi “ A
“W M{ i me 1 J ” (|1| i M ml\\ | J IJ\ “ |

YBH 9.1 kHz

Using 0 dB Attenuation

'HUITIJ' ,|‘|’]|LI| W m||1|) 'l,hﬂu f|} IMF 711

YBH 9.1 kHz

18

Chapter 3

Figure 3-3

RBW Selections

Measuring a Low—Level Signal
Decreasing the Resolution Bandwidth

Decreasing the Resolution Bandwidth

1. Preset the analyzer, then set the following:

On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 300 MHz
= Amplitude: —80 dBm = Span: 5 MHz
< RF Output: On

2. Set the reference level to -40 dBm.
Press Amplitude Y Scale, Ref Level, =4, 0, dBm.
3. Connect the signal source to the analyzer RF input.
4. Decrease the resolution bandwidth: Press BwW/Avg, [I[10

The low-level signal appears more clearly because the noise level is
reduced (see Figure 3-3).

Decreasing Resolution Bandwidth
% Agilent 13:15:11 Sep 13, 2000

Atten 18 JB

RBW
3.000000000 kHz

i o

VBH 3 kHz

A “#” mark appears next to the Res BWannotation in the lower left
corner of the screen, indicating that the resolution bandwidth is
uncoupled.

Using the step keys, you can change the RBW in a 1-3-10 sequence.
Choosing the next lower RBW for better sensitivity increases the sweep
time by about 10:1 for swept measurements, and about 3:1 for FFT
measurements (within the limits of RBW).

Using the knob or keypad, you can select RBWs from 1 Hz to 3 MHz in

Chapter 3 19

Measuring a Low—Level Signal
Decreasing the Resolution Bandwidth

approximately 10% increments, plus 4, 5, 6 and 8 MHz. This enables
you to make the trade off between sweep time and sensitivity with finer
resolution.

©
|
2
(92]
©
>
(¢B]
o
o
-
(9]
(@)
[
=
>
[%2]
©
[<B]
=

20 Chapter3

Measuring a Low—Level Signal
Using the Average Detector and Increased Sweep Time

Using the Average Detector and
Increased Sweep Time

1. Preset the analyzer, then set the following:

On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 300 MHz
= Amplitude: —-80 dBm = Span: 8 MHz
< RF Output: Oon

2. Set the reference level to -40 dBm.

Press Amplitude Y Scale, Ref Level, =4, 0, dBm.
3. Connect the signal source to the analyzer’'s RF input.
4. Select the average detector:

Press Det/Demod, Detector, Average.

NOTE A “#” mark appears next to the Avg annotation, indicating that the
detector has been chosen manually (see Figure 3-4).

5. Increase the sweep time and note how the noise smooths out, as
there is time to average more noise values for each of the displayed
data points:

Press Sweep, Sweep Time,d (press six times).

6. With the sweep time at 100 ms, change the Avg/VBW type to
log averaging:

Press BW/Avg, Avg/VBW Type, Log-Pwr.

NOTE Log averaging is superior to power (r.m.s.) averaging for finding CW
signals near noise. Power averaging is faster in reducing the variations
in noise and noise-like signals.

Chapter 3 21

Measuring a Low—Level Signal
Using the Average Detector and Increased Sweep Time

Figure 3-4 The Effect of Sweep Time

indicates
manually-chosen
detector

Sweep Time
100.0 ms

"'-*.‘*r'"'IF‘r"-\""J"!'“P-""N"'-'"‘?"""11"1"“!.*"“"'

©
|
2
(92]
©
>
(¢B]
o
o
-
(9]
(@)
[
=
>
[%2]
©
[<B]
=

22 Chapter 3

Measuring a Low—Level Signal
Trace Averaging

Trace Averaging

Trace averaging is a digital process that averages each trace point with
the previous trace-point average.

NOTE This is a trace processing function and is not the same as using the
Average detector (as described on page 21).

1. Preset the analyzer, then set the following:

On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 300 MHz
= Amplitude: —-80 dBm = Span: 5 MHz
< RF Output: Oon

2. Set the reference level to -40 dBm.
Press Amplitude Y Scale, Ref Level, =4, 0, dBm.
3. Connect the signal source to the analyzer RF input.
4. Initiate video averaging: Press BW/Avg, Average (to select On).

As the averaging routine smooths the trace, low level signals become
more visible. Aver age 100 (the default number of samples, or
sweeps, to complete the averaging routine) appears in the active
function block.

5. With average as the active function, set the number of samples to 25:
Press 2, 5, Enter.

Annotation on the left side of the graticule shows the type of
averaging (LgAV in this example, as shown in Figure 3-5), and the
number of traces averaged.

Changing most active functions restarts the averaging, as does
toggling the Average key or pressing Restart. Once the set number of
sweeps completes, the analyzer continues to provide a running
average based on this set number.

NOTE If you want the measurement to stop after the set number of sweeps,
use single sweep: Press Single. Press Restart for another set. Press
Sweep, Sweep (press until Cont is underlined) to return to continuous
sweeping.

Chapter 3 23

©
|
2
(92]
©
>
(¢B]
o
o
-
(9]
(@)
[
=
>
[%2]
©
[<B]
=

Measuring a Low—Level Signal
Trace Averaging

Figure 3-5 Using Trace Averaging, Continuous Sweep

“ Agilent 13:17:51 Sep 13, 2060

Trace Averaging Average
Annotation 25

24

Chapter 3

T4

s|eubis buinjosay

w0
<
c
2
wn
o
=
=
]
D
]
[a e

Resolving Signals

This chapter provides the following examples:

“Separating Equal-Amplitude Signals” on page 28

Two equal-amplitude input signals that are close in frequency can
appear as one on the analyzer display. When the analyzer measures
a single-frequency signal, it displays the signal with the shape of the
selected internal resolution bandwidth filter. As you change the filter
bandwidth, you change the width of the displayed response. If you
use a wide filter, two equal-amplitude input signals that are close in
frequency appear as one signal. The analyzer’s internal filter
bandwidths determine signal resolution (how close equal-amplitude
signals can be and still be distinguished).

The resolution bandwidth function selects the internal filter
bandwidth, and is defined as the 3 dB bandwidth of the filter. To
resolve two signals of equal amplitude, you must set the resolution
bandwidth less than or equal to the frequency separation of the two
signals. If the bandwidth is equal to the separation and the video
bandwidth is less than the resolution bandwidth, you will see a dip
of approximately 3 dB between the peaks of the two signals.

For swept analysis, reducing the resolution bandwidth requires an
increase in sweep time to keep a measurement calibrated. For best
measurement times: set the sweep time (Sweep, Sweep Time) to Auto,
and the auto sweep time (Sweep, Auto Sweep Time) to Norm. Use the
widest resolution bandwidth that still permits resolution of all
desired signals.

26

Chapter 4

Resolving Signals

< “Finding a Small Signal Hidden by a Larger Signal” on page 30

When signals are close together but not equal in amplitude, you
must consider the shape of the analyzer’s internal filter as well as its
3 dB bandwidth. If a small signal is too close to a larger signal, the
smaller signal can be hidden by the skirt of the filter.

To view the smaller signal, select a resolution bandwidth such that k
is less than a (see Figure 4-1). The separation between the two
signals (a) must be greater than half the filter width of the larger
signal (k), measured at the amplitude level of the smaller signal.

The digital filters in this instrument have filter widths about
one-third as wide as typical analog RBW filters. This enables you to
resolve close signals with a wider RBW (and consequently, a faster
sweep).

Figure 4-1 Resolution Bandwidth Requirements to Resolve Small Signals

«— a0 —p

Chapter 4 27

Resolving Signals

Separating Equal-Amplitude Signals

w0
<
c
2
wn
o
=
=
]
D
]
[a e

SOURCE SOURCE
#1 #2
BNC TEE

Separating Equal-Amplitude Signals

The following example shows how to differentiate equal-amplitude
signals separated by 100 kHz.

1. Connect two sources to the analyzer's RF input as follows:

SPECTRUM ANALYZER

bl76b

2. Preset the analyzer, then set the following:

On Source 1

On Source 2

= Frequency:
= Amplitude:
* RF Output:

300 MHz = Frequency: 300.1 MHz
—20 dBm = Amplitude: —20dBm
Oon * RF Output: On

On the Analyzer

Center Frequency: 300 MHz
Span: 2 MHz
Resolution bandwidth: 300 kHz

Press BW/Avg, Resolution BW, 3, 0, 0, kHz.

A single signal peak should be visible.

NOTE If you cannot find the signal peak, increase the span to 20 MHz, then
use signal tracking to bring the signal to the center of the screen:

Press FREQUENCY, Signal Track (press to underline On).

Reduce the span back to 2 MHz, then turn signal tracking off.

3. Because the resolution bandwidth must be less than or equal to the

28

Chapter 4

Resolving Signals
Separating Equal-Amplitude Signals

frequency separation of the two signals, change the resolution
bandwidth to 100 kHz.
4. Decrease the video bandwidth to 10 kHz, as shown in Figure 4-2:

Press BW/Avg, Video BW, 1, 0, kHz.

Figure 4-2 Resolving Signals of Equal Amplitude

% Agilent 08:56:25 Sep 20, 2000

Atten 10 dB

UBW
1000000000 kHz |

You can experiment with reducing the resolution bandwidth to better
resolve the signals. As you reduce the resolution bandwidth, the
resolution of the individual signals improves, but the sweep gets slower.
For fastest measurement times, use the widest resolution bandwidth
that still displays two distinct signals.

Under factory preset conditions, the resolution bandwidth is coupled
(linked) to the span. When you change the resolution bandwidth from
the coupled value, a # mark appears next to Res BWin the lower-left
corner of the screen, indicating that the resolution bandwidth is
uncoupled (also see the Auto Couple key description in the

PSA Reference Guide).

NOTE To resolve two signals of equal amplitude with a frequency separation
of 200 kHz, you must use a resolution bandwidth (RBW) < 200 kHz. To
enter RBW values between the 1, 3, 10 sequence provided by the
up/down arrow keys, you must use the knob or data keys. In this
example, the up/down arrow keys would select a 300 kHz filter which is
greater than the signal separation and will not resolve the signals.

Chapter 4 29

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal

Finding a Small Signal Hidden by
a Larger Signal

w0
<
c
2
wn
o
=
=
]
D
]
[a e

The following example demonstrates how to resolve two signals
separated by 50 kHz and 60 dB.

1. Connect the equipment as shown on page 28, then set the sources as
follows:

Source 1: 300 MHz -20dBm RF output on

Source 2: 300.05 MHz -80dBm RF outputon

2. Preset the analyzer, then set:

= Center Frequency: 300 MHz = Resolution Bandwidth: 10 kHz
= Span: 300 kHz

3. Set the 300 MHz signal to the reference level (top graticule):
Press Peak Search, Marker O, Mkr O Ref Lvl.

4. Place a marker on the smaller signal:
Press Marker, Delta, Peak Search, Next Pk Right.

When you use a 10 kHz filter with a typical shape factor of 4.1:1, the
filter has a bandwidth of 41 kHz at the 60 dB point. Because the
half-bandwidth value (20.5 kHz) is narrower than the frequency
separation, the input signals are resolved, as shown in Figure 4-3.

Figure 4-3 Signhal Resolution with a 10 kHz Resolution Bandwidth
4 Agilent 11:07:18 Nov 15, 2000

Atten 18 dB

52.100 kHz

-59.86 dB

VBH 18 kHz

If you use a resolution bandwidth where the half-bandwidth value is

30 Chapter 4

Figure 4-4

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal

wider than the frequency separation, the signals may not be resolved,
as shown in Figure 4-4.

In this example, the signal amplitude difference is 60 dB. To determine
the resolution capability for intermediate amplitude differences,
assume the filter skirts between the 3 dB and 60 dB points are
parabolic, like an ideal Gaussian filter. The resolution capability is
approximately:

. OAf 72
12.04 dB CREBWL

where Af is the separation between the signals.

Signal Resolution with a 100 kHz Resolution Bandwidth

- Agilent 11:18:58 Moy 15, 2008

1

'4 g \ "'ﬂ"| (b "I""‘r,n
ft,|1 "III |H\Iﬂ %p Lilllr‘uhﬁ“ h','l “ |ﬂ‘

Chapter 4 31

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal

w0
<
c
=
wn
()
=
=
)
D
)
o

32 Chapter4

€€

leubis Buiyig e bumpjoea |

Tracking a Drifting Signal

This chapter provides the following examples:
e “Tracking a Signal” on page 35

When you measure a signal peak and must repeatedly adjust the
center frequency because the signal drifts, you can use the signal
track function to automatically keep the selected peak in the center
of the display.

= “Measuring a Source’s Drift” on page 37

You can use the maximum-hold function to display and hold the
maximum amplitude level and frequency drift of an input signal
trace. You can also use the maximum hold function to determine how
much of the frequency spectrum a signal occupies.

Equipment Both examples require a signal source.

©
c
2
wn
o
c
&
=
(@]
©
o
=
=
&)
o
'_

34 Chapter5

Tracking a Drifting Signal

Tracking a Signal
Tracking a Signal
1. Preset the analyzer, then set the following:
On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 301 MHz
= Amplitude: —20dBm = Span: 10 MHz
< RF Output: Oon

2. Connect the signal source to the analyzer’'s RF input.

Because you set the analyzer’s center frequency to a different value
than that of the source’s output, the 300 MHz peak is not in the
center of the display.

3. Turn on signal tracking: Press FREQUENCY, Signal Track (press to
underline On).

This does the following:

Places a marker on the highest-amplitude peak.

Brings the selected peak to the center of the display.

Adjusts the center frequency each sweep to keep the selected
peak in the center.

Turns on the signal track annotation (see Figure 5-1).

4. When you have both signal track and marker delta on, you can read
any signal drift from the screen:

Press Marker, Delta. The marker readout indicates any change in
frequency and amplitude as the signal moves.

5. Slowly change the source’s frequency, and note that the analyzer’s
center frequency changes, centering the signal with each change (see
Figure 5-1).

6. Experiment with different spans, and with changing the frequency
more slowly and more quickly, to see what happens.

Chapter 5 35

©
c
2
wn
o
c
&
=
(@]
©
o
=
=
&)
o
'_

Tracking a Drifting Signal
Tracking a Signal

Figure 5-1 Using Signal Tracking to Track a Drifting Signal

Marker a
1.700000 MH=

0.00 dB

Signal Track
Annotation : m | A it b I|’|pdI - .p :
ST iﬂd Iy ||‘|m| N |‘ ||l | ||,|)1|1 Iy l“! I .I ||'|||P[l| ' ﬂ Iil.' ﬂ] lr'"iﬂ ||'I| I'1||HI ||d|||hrf1' lrlllﬂuip'.“ I|h|||1|]||(ﬂll'*|u.
.. VEW 188 kHz | l
36 Chapter5

Tracking a Drifting Signal
Measuring a Source’s Drift

Measuring a Source’s Drift

1. Preset the analyzer, then set the following:
On a Signal Source On the Analyzer
= Frequency: 300 MHz = Center Frequency: 300 MHz
= Amplitude: —20dBm = Span: 10 MHz
< RF Output: Oon

. Connect the signal source to the analyzer's RF input, and place a

marker on the peak of the signal: Press Peak Search.

. Change the span to 500 kHz (if necessary, recenter the signal).

Measure the excursion of the signal: Press Trace/View, then Max Hold.

As the input signal varies, maximum hold maintains the signal’s
maximum responses. The annotation on the left side of the screen
(ML S2 S3) shows that trace 1 is in maximum-hold mode; traces 2
and 3 are in store-blank mode.

. Select trace 2: Press Trace/View, Trace 1 2 3 (until 2 is underlined)

. Clear trace 2 and have it continuously display during sweep:

Press Clear Write.

Trace 1, in maximum hold, shows any frequency shift in the signal.

. Slowly change the source’s frequency in 1 kHz steps. The analyzer

display should look similar to Figure 5-2.

Chapter 5 37

©
c
2
wn
o
c
&
=
(@]
©
o
=
=
&)
o
'_

Tracking a Drifting Signal
Measuring a Source’s Drift

Figure 5-2 Viewing a Drifting Signal Using Max Hold

Trace 1 shows
frequency shift

Span
500.0000000 kHz |

Trace Status
Annotation

38 Chapter5

6€

SjuswaJdnsesl uollaolsida
Bupfen

Making Distortion Measurements

This chapter provides the following examples:
= “ldentifying Distortion from the Analyzer”
— “ldentifying Harmonic Distortion Products” on page 41

High-level input signals can cause analyzer distortion products
that mask input signal distortion.

— “Measuring the Analyzer’'s
Third-Order Intermodulation Distortion” on page 43

Two-tone, third-order intermodulation distortion is a common
test in communication systems. When two signals are present in a
non-linear system (a system with components such as amplifiers
and mixers), signals can interact and create distortion products
close to the original signals.

= “Measuring Harmonics and Harmonic Distortion” on page 45

This example describes how to make a harmonic measurement, and
details the calculation of the total harmonic distortion for stable,
modulated or unmodulated signals.

n
-
c
3}
e
D
S
S
7}
©
o3}
=
c
o
=]
|-
o
-~
N2
(]
o
=
X
[
=

40 Chapter 6

Making Distortion Measurements
Identifying Distortion from the Analyzer

Identifying Distortion from the Analyzer

Identifying Harmonic Distortion Products

The following example uses an external signal, trace 2, and the RF
attenuator to determine whether harmonic distortion products are

generated by the analyzer.

1. Preset the analyzer, then set the following:

On a Signal Source On the Analyzer

400 MHz
500 MHz

= Frequency: 200 MHz = Center Frequency:

= Amplitude: 0 dBm = Span:

< RF Output: On

Connect the source to the analyzer. The analyzer displays the
200 MHz signal and harmonics spaced every 200 MHz (see Figure

6-1).

Figure 6-1 Harmonic Distortion
| Span

Span
508, 800000 MHz

Full Span
Zero Span

Last Span

2. On the analyzer, place a marker on one of the observed harmonics,
and change the center frequency to the value of that harmonic.

3. Change the span to 50 MHz.

Chapter 6 41

Making Distortion Measurements
Identifying Distortion from the Analyzer

4. Change the attenuation to 0 dB.

Press Amplitude Y Scale, Attenuation (press until Man is underlined),
0, dB.

5. Save the screen data in trace 2:
Press Trace/View, Trace 1 2 3 (to underline 2), then Clear Write.
Allow the trace to update (two sweeps), then press View.

6. Place a delta marker on the harmonic:
Press Peak Search, Marker, Delta.

The analyzer display shows the stored data in trace 2 and the
measured data in trace 1. The AMNKr 1 amplitude reading is the
difference in amplitude between the reference and active markers.

7. Increase the RF attenuation to 10 dB. See Figure 6-2.
Figure 6-2 RF Attenuation of 10 dB
W Agilent 13:45:20 Sop 13, 2000 | Amplitude

Ref Level
-18.88 dBm

Attenuation
16.88 4B

Auto Man

Scale/Div
16.68 dB
Input Att

10.00 dB ' Scale Type

Log Lin
Presel Center

Presel Ad just
B.00000000 Hz

More
1of3

n
-
c
3}
e
D
S
S
7}
©
o3}
=
c
o
=]
|-
o
-~
N2
(]
o
=
X
[
=

The AMKr 1 amplitude reading comes from two sources:

< Increased input attenuation causes poorer signal-to-noise ratio.
This can cause the AMKr 1 to be positive.

= The reduced contribution of the analyzer circuits to the harmonic
measurement can cause the AMNKr 1 to be negative.

Large AMkr 1 measurements indicate significant measurement
errors. For the best measurement accuracy, set the input attenuator
to minimize the absolute value of AMKr 1.

42 Chapter 6

CAUTION

Figure 6-3

Making Distortion Measurements
Identifying Distortion from the Analyzer

Measuring the Analyzer’s
Third-Order Intermodulation Distortion

The following example uses two sources at a frequency separation of
1 MHz. If you choose to use different frequencies, be sure to maintain
the 1 MHz separation.

1. Set the sources for a frequency separation of 1 MHz:

Source 1: 300 MHz -5dBm RF outputon
Source 2: 301 MHz -5dBm RF outputon

2. Connect the equipment as shown in Figure 6-3, and preset the
analyzer.

Ensure that the combiner has a high degree of isolation between the
two input ports so the sources do not intermodulate.

Equipment Setup

SPECTRUM ANALYZER
SOURCE #1 :
I

LOWPASS INPUT

FILTER
COMBINER J
LOWPASS

FILTER

SOURCE #2 J

3. On the analyzer, set:

= Center Frequency: 300.5 MHz

= Span: 5 MHz (wide enough to see the distortion products)

To be sure the distortion products are resolved, adjust the resolution
bandwidth as needed until the distortion products are visible.

Chapter 6 43

Making Distortion Measurements
Identifying Distortion from the Analyzer

4. Set the mixer input level to -30 dBm:

Press AMPLITUDE, More, More, Max Mixer Lvl, 3, 0, -dBm.
5. Move the signal to the reference level:

Press Marker, Peak Search, Marker O, Mkr O Ref Lvl.

6. Reduce the resolution bandwidth until the distortion products are
visible: Press BW/Avg, O

7. Use the delta marker function to measure the difference between the
source signal and each distortion product (Figure 6-4 shows an
example of this):

Press Marker, Delta, then use the knob to move the delta marker to
the distortion product you want to measure.

For more information about measuring distortion products, see
“Measuring Harmonics and Harmonic Distortion” on page 45.

Figure 6-4 Measuring a Distortion Product

n
-
c
3}
e
D
S
S
7}
©
o3}
=
c
o
=]
|-
o
-~
N2
(]
o
=
X
[
=

44 Chapter 6

NOTE

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

Measuring Harmonics and
Harmonic Distortion

This measurement assumes that the highest amplitude signal
displayed is the desired fundamental frequency.

In this example, the 10 MHz Reference Output is used as the
fundamental source. The harmonics and total harmonic distortion are
measured.

1.

2.

Preset the analyzer, then set the following:

Center Frequency: 10 MHz
Span: 1 MHz

Set the reference level to 10 dBm.

Press Amplitude Y Scale, Ref Level, 1, 0, dBm.

. Set the resolution bandwidth to 10 kHz by pressing BW/Avg, Res BW

(press until Man is underlined), 1, 0, kHz.

Resolution bandwidth and attenuation are adjusted to maximize
dynamic range while maintaining a reasonable sweep time.
Narrower resolution bandwidths provide greater dynamic range, but
lengthen sweep time. You can use the dynamic range graph (Figure
6-5 on page 46) to help determine optimal settings. In this example,
harmonics are within 50 dB of the fundamental, requiring a 50 dBc
dynamic range; a 10 kHz resolution bandwidth provides more than
enough dynamic range to view the second harmonic.

When measuring the Nth harmonic, the analyzer uses the narrowest
resolution bandwidth that is N times the resolution bandwidth used
to measure the fundamental. Widening the resolution bandwidth
enables the measurement to capture all modulation on the
harmonics. An asterisk (*) appears next to the amplitudes of
measured harmonics for which the desired resolution bandwidth
cannot be set. As long as the signal at the harmonic has less
modulation width than the RBW, the measurement is accurate.

. Set the attenuation to 40 dB.

Press AMPLITUDE, Attenuation (press until Man is underlined), 4, 0,
dB.)

Attenuation is set for optimal power at the mixer, which occurs at
the intercept of the second order harmonic line and the Displayed
Average Noise Level (DANL) line for the resolution bandwidth
selected (see the note inside Figure 6-5). This occurs at a mixer level
of approximately —29 dBm. The input level from the 10 MHz

Chapter 6 45

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

Reference Output is +5 dBm in this example. Using the mixer level
and the input level in the equation below provides us with an
optimal attenuation setting of 34 dB.

Attenuation Setting (dB) = Input Level (dBm) — Mixer Level
5. Activate the rear panel 10 MHz output.
Press System, Reference, 10 MHz Out (press until On is underlined).

6. Connect the analyzer’s rear panel 10 Mz QUT (SW TCHED) to the
front-panel RF input.

Figure 6-5 Dynamic Range Graph

-40 R4
"
K4
kG
s
-50 A
./ !
R4
R
’
8 -60 Rz
-] o’
(] 4 B *Opti
. B ptimal Power
g ://),/ at the mixer
g -70 ~ > :
2
£
©
3
a -80
— DANL
-90 -+ = Second Order Distortion
- Third Order Distortion
-100

Mixer Level (dBm) bn713a

7. To calculate the total harmonic distortion of a signal, perform the
following steps, in the following order:

a. Determine the frequencies of the harmonics.

)
-
c
[<B]
=
[<B]
S
>
wn
©
[<B]
=
c
o
=]
|-
o
S
@
(]
(@)
=
4
(48]
=

b. For each harmonic:

1. Select the harmonic: Press Marker, then use the knob to move
the marker to the desired harmonic.

2. Span down to zero span: Press Span, Zero Span.

3. Measure the amplitude.

NOTE To display the amplitude in voltage units: press Amplitude, More, Y-Axis
Units, Volts.

c. Divide the root-sum-squares of the harmonic voltages by the

46 Chapter 6

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

fundamental signal voltage. Then multiply the results by 100 to
arrive at a percentage:

E ' Tmax al%

al > Ehg

%THD = 100><'1:T2
f

where:

%THD = Total Harmonic Distortion as a percentage
h = harmonic number
Hmax = Maximum Harmonic Value listed

Ep, = voltage of harmonic h
E¢ = voltage of fundamental signal

Example THD Number of harmonics (Hmax) = 5; measured values are:
Calculation
E; = 5dBm = 3.162mW = 397.6 mV
E, = -42dBc = -37dBm = 199.5nW = 3.159 mV
E; = —26dBc = —-21dBm = 7.943 pW = 19.93 mV
E, = -49dBc = —44dBm = 39.81 nW = 1411 mV
E; = -36dBc = =31 dBm = 7943 nW = 6.302mV
then,
«/3 159 mV2+1993 mV2+ 1411 mV2+6301 mV2
THD = 100 x — . . : = 5.33%
397.6 mV
NOTE Alternate Method

You can use the analyzer’s built-in harmonic distortion measurement
capability: Press Measure, More, Harmonic Distortion, Trace/View,
Harmonics & THD.

Chapter 6 a7

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

[%2]
)
c
5]
=
[<B]
S
>
wn
©
[<B]
S
c
o
=]
S
(=]
P
Xz,
(]
(@)
=
X7
(48]
>

48 Chapter6

914

Ssjeubis asIoN Buriansea|n

i)
©
=

2

wn
©

R
o

=2
o
<

=
>
7
S
o5}
=

Measuring Noise Signals

There are several ways to measure noise power. This chapter provides
the following examples:

“Measuring Noise at a Single Frequency” on page 51

This example uses the marker noise function. In this example, you
must pay attention to the potential errors due to a discrete signal
(spectral components). This measurement uses the analyzer's

50 MHz reference signal.

“Measuring Signal-to-Noise Levels” on page 53

For this measurement, the signal (carrier) is a discrete tone (the
50 MHz amplitude reference signal).

If the signal is a carrier that is modulated under normal operation,
you can use the amplitude reference signal as the signal of interest
and the noise of the analyzer for the noise measurement. In this
example, however, you set the input attenuator such that both the
signal and the noise are well within the calibrated region of the
display.

“Measuring Total Noise Power” on page 55

This example uses markers to set the frequency span over which you
measure power. Markers enable you to select and measure any
portion of the displayed signal.

50

Chapter7

Measuring Noise Signals
Measuring Noise at a Single Frequency

Measuring Noise at a Single Frequency

This example uses the analyzer’s 50 MHz reference signal, and the
analyzer's marker noise function.

1. With nothing connected to the RF input, preset the analyzer and set:

= Attenuation 40 dB
= Center Frequency: 49.98 MHz
= Span: 100 kHz

2. Turn on the analyzer's 50 MHz amplitude reference signal:
Press Input/Output, Input Port, Amptd Ref (f=50MHz).
3. Activate the noise marker: Press Mkr Fctn, Marker Noise.

Note that the display detection changes to Avg; the marker floats
between the maximum and the minimum noise. The marker readout
is in dBm(1Hz) or dBm per unit bandwidth (see Figure 7-1 on page
52).

For noise power in a different bandwidth, add 10 x log(BW) . For
example, for noise power in a 1 kHz bandwidth, add 30 dB
(10 x log(1000)) to the noise marker value.

4. To reduce the variations of the sweep-to-sweep marker value, change
the sweep time to 3 seconds: Press Sweep, Sweep Time, 3, s.

NOTE Noise measurements are noisy. Increasing the sweep time enables the
average detector to average over a longer time interval, thus reducing
the variations in the results.

5. The noise marker value is based on the mean of 5% of the trace
points centered at the marker. With a total of 601 points across the
entire trace, 5% is around 30 points which covers approximately half
of a division.

To see the effect, press Marker and use the knob to move the marker
to the 50 MHz signal.

The marker does not go to the peak of the signal because the average
of 30 trace points is not as high as the peak of the signal.

6. Widen the resolution bandwidth to 10 kHz: Press BW/Avg, 1, 0, kHz.
7. Again press Marker and move the marker to the signal.

The 30 trace points still cover approximately 0.5 divisions, but the
signal level is close to constant over this range, so the marker is
closer to the peak of the signal.

Chapter 7 51

Measuring Noise Signals
Measuring Noise at a Single Frequency

8. Return the resolution bandwidth to automatic mode;:

Press BW/Avg,Res BW (until Auto is underlined).

Figure 7-1 Activating the Noise Marker

Using the Avg
detector

Marker
49.980000 MHz
Noise -114.80 dBm(1Hz)

: lHN"W'WIWl“\'ﬁft*wWW\M’WW : M”{qﬂy‘wfﬂ'ﬂw'uw;'ﬁﬁ'tﬂiﬂ.fl*

9. Press Marker and use the knob to place the marker at 49.9962 MHz
to measure the noise very close to the signal.

Note that the marker reads an incorrect value, because some of the
trace points are on the skirt of the signal response.

10. Set the analyzer for zero span: Press SPAN, Zero Span, Marker.

Note that the analyzer display is again analyzing at 49.95 MHz and
the marker value is now correct.

i)
©
=

2

wn
©

R
o

=2
o
<

=
>
7
S
o5}
=

52 Chapter 7

Measuring Noise Signals
Measuring Signal-to-Noise Levels

Measuring Signal-to-Noise Levels
This example uses the analyzer’s 50 MHz amplitude reference signal.

1. Preset the analyzer, then set:

= Attenuation 40 dB
= Center Frequency: 50 MHz
* Span: 1 MHz

2. Set the reference level to =10 dBm.
Press Amplitude Y Scale, Ref Level, 1, 0, dBm.

3. Turn on the analyzer's 50 MHz amplitude reference signal, as
described on page 51, in Step 2.

4. Place a marker on the peak of the signal, then place a delta marker
in the noise at a 200 kHz offset: Press Marker, Delta, O, 0, kHz.

5. Turn on the marker noise function: Press Mkr Fctn, Marker Noise.
This lets you view the results of the signal-to-noise measurement
(Figure 7-2).

Read the signal-to-noise in dB/Hz, which is the noise value
determined for a 1-Hz noise bandwidth. For noise value at a
different bandwidth, increase the ratio by 10 x log(BwW) . For example, if
the analyzer reads —70 dB/Hz, but you are interested in a channel
bandwidth of 30 kHz:

S/N = (-70dB)/Hz + 10 x log(30kHz) = —25.2dB/ 30kHz

Note that the detection mode is now Avg, and that the power average
(PAvg) average type is selected.

NOTE If the delta marker is within one-half a division of the response to a
discrete signal (in this case, the amplitude reference signal), there is
potential for measurement error.

Chapter 7 53

Measuring Noise Signals
Measuring Signal-to-Noise Levels

Figure 7-2 Measuring the Signal-to-Noise
Detection Mode % Aglent L4:85:43 Sep 25, 2000
Annotation i)
1 agm #Htten
Power Average Marker a

Annotation 208 .000 kHz
|—> A

Ncuse 8? 97 dB/Hz

nIwA mi
.'I ‘W’HI l'wm W“)'ufﬂuul N_ﬂu“hw hm.v J”"W'l‘[h”ﬂ]:lt]ﬂ\.m“'

WEW 18 kHz

i)
©
=

2

wn
©

R
o

=2
o
<

=
>
7
S
o5}
=

54 Chapter 7

NOTE

Measuring Noise Signals
Measuring Total Noise Power

Measuring Total Noise Power

You can use markers to set the frequency span over which you measure
power. Markers enable you to select and measure any portion of the
displayed signal. Unless manually coupled, the analyzer selects the
average display detector and the power averaging type.

1. Preset the analyzer, then set:

= Attenuation 40 dB
= Center Frequency: 50 MHz
= Span: 100 kHz

2. Set the reference level to -10 dBm.
Press Amplitude Y Scale, Ref Level, -1, 0, dBm.
3. Set the marker span to 40 kHz:

Press Marker, Span Pair (until Span is underlined), 4, 0, kHz.

Alternate Method

You can also use Delta Pair to set the measurement start and stop points
independently (as described on page 12).

The resolution bandwidth should be about 1 to 3% of the
measurement (marker) span (which is 40 kHz in this example). The
analyzer’s default resolution bandwidth is approximately 1 kHz.

4. Measure the power between markers:
Press Mkr Fctn, Band/Intvl Power.

The analyzer displays the total power between the markers, as
shown in Figure 7-3 on page 56.

5. Add a discrete tone (the analyzer's 50 MHz amplitude reference
signal) to see how it affects the reading (also see Figure 7-4 on page
56):

Press Input/Output, Input Port, Amptd Ref Out (f=50 MHZz).

Note that the power measured is the sum of the noise power and the
power of the amplitude reference. This sum is dominated by the
amplitude reference power.

6. Move the measured span:
Press Marker, Span Pair (Center underlines).

Then use the knob to exclude the tone and note reading.

Chapter 7 55

Measuring Noise Signals
Measuring Total Noise Power

Figure 7-3 Viewing Power Between the Markers

i Agilent 14:18:28 Sep 25, 2000

#Atten 48 dB

Ref Marker Freq
40.000 kHz
Band Pwr -67. 98 dBm

r|1 l f ,‘1| 1|I|| |||| |

‘ 'hlq’ﬂ”ﬂ | rl|| |' "'l‘.“"wqu. “HJ u'/“ﬂ ‘Hrr'”h’,

Figure 7-4

Ref Marker Freq
40.080 kHz
Band Pwr -25.00 dBm

||||||

" JH e "ﬂ”n"ﬂ i '-"||“'|n|;ll n\“
- \M }f\\ l i A ' \

i)
©
=

2

wn
©

R
o

=2
o
<

=
>
7
S
o5}
=

56 Chapter 7

YA

sjeubis
|e11b1q Jo 1aMmod ayl bulanses|n

of Digital Signals

Measuring the Power of Digital Signals

There are several ways to measure the power of noise, or of the
noise-like signals which are common in digitally modulated systems.
This chapter provides the following examples:

-
(D]
S v
o

g &
o D2
S m
——"
c S
.g@
n 0O
© y—
L O
=

= “Making Power Measurements on Burst Signals” on page 59

The Burst Power measurement is a very accurate method of
determining the average power for the specified burst. The analyzer
is set into zero-span mode, with a sweep time that captures at least
one burst. The default is just more than a single burst, but the user
may change this using the ‘Sweep Time' softkey in the ‘Sweep’ menu.

< “Making Statistical Power Measurements (CCDF)” on page 63

The CCDF (complimentary cumulative distribution function)
measurement is a statistical measurement of a signal’s high-level or
peak power. It is a graphical representation of the percentage of time
a signal exceeds its average power, and by how much this average is
exceeded.

All CDMA signals, and W-CDMA signals in particular, are
characterized by high power peaks that only occur occasionally. It is
important that these peaks are preserved, otherwise individual data
channels will not be received properly. A signal with higher
probabilities of high peaks is often more distorted by signal
processing elements that cannot handle the peaks. If a CDMA
system works well most of the time, only failing occasionally, the
cause can often be traced to compression of the higher peak signals.

= “Making Measurements of Adjacent Channel Power (ACP)” on page
66

ACP measures the total power in the specified channel and its
adjacent channels for up to six pairs of offset frequencies. The offset
frequencies can be modified at any time, but the default values are
those specified by the relevant international standard that you
select. The results are displayed by default both as power relative to
the carrier (in dBc) and as absolute power (dBm).

= “Making Measurements of Multi-Carrier Power (MCP)” on page 70

MCP measures the total power in two or more transmit channels
and their adjacent channels for up to three pairs of offset
frequencies. The offset frequencies can be modified at any time, but
the default values are those specified by the relevant international
standard that you select. This measurement is available with no
radio standard selected or with any of the following radio standards:
1S-95, J-STD-008, all cdma2000 standards, or W-CDMA.. Results for
carriers without power present are displayed relative to the
reference carrier. Results for adjacent channels are displayed both in
absolute power (dBm) and as power relative to the reference carrier
(dBc).

58 Chapter8

Figure 8-1

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

Making Power Measurements on Burst Signals

The following example demonstrates how to make a burst power
measurement on a Bluetooth signal broadcasting at 2.402 GHz.

1. Connect a DH1 Bluetooth signal to the analyzer input, preset the
analyzer and set:

= Mode: Spectrum Analysis
= Mode setup, radio standard: Bluetooth
= Mode setup, std setup,
Packet Type: DH1
= Center Frequency: 2.402 GHz

Note that burst signal levels > -5 dBm may overload the analyzer.
You may need to set input attenuation to auto so the required
attenuation to added.

2. Select the burst power measurement.
Press MEASURE, More, Burst Power.

3. Set the best reference level for this measurement on this signal.
Press Meas Setup, Optimize Ref Level.

4. View the results using the full screen.
Press Display, Full Screen and you should see results similar to

Figure 8-1.

Full Screen Display of Burst Power Measurement Results
% Agilent 15:04:27 Mar 21, 2082

#YBH 56 MHz

Output Power Amplitude Threshold
M

ured Burst Width)
-12.47 dBm

Current Data

Chapter 8 59

o
S,
o
Q
=
=8
2]
Q
=
=
@ 3

S
o
=
[S
a
@
=
=
o)
=
=
=
7
i
s
=

£
(4]
c
2
wn
<
=
2
(m)
Y—
o

NOTE

NOTE

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

Alternate Methods

1. If an external trigger is available, connect this to Trigger In on the
rear of the instrument and press Trig, Ext Rear, or connect to Ext Trigger
Input on the front panel and press Trig, Ext Front.

2. You could also select Video trigger. It might then be necessary to
adjust the trigger level (as indicated by the horizontal green line) by
rotating the front panel knob or by entering a numeric value on the
keypad. For this example, set the trigger level to -30 dBm.

Although the Trigger Level allows the analyzer to detect the presence of
a burst, the Burst Power measurement is determined by the threshold
level, as described next.

5. Set the relative level above which the burst power measurement will
be calculated.

Press Meas Setup, Threshold LvI (Rel) -10, dB.

The mean power of the burst is measured from the point where the
rising signal level rises above the threshold (green line) to the point
where the signal passes below it. In this example, the threshold level
has been set to be 10 dB below the peak value. Refer to Figure 8-2.

6. To specify the burst width for which the measurement will be taken:
Press Meas Setup, Meas Method, Measured Burst Width, Burst Width
(Man), 200, ps. This will measure just the central 200 us of the burst.

The burst width is indicated on the screen by two vertical white lines
as shown in Figure 8-2. Manually setting the burst width allows you
to make it a long time interval (to include the rising and falling
edges of the burst) or to make it a short time interval, thus
measuring only a small central section of the burst.

NOTE

The Bluetooth standard states that power measurements should be
taken from the central 60% of the burst only. Other radio standards use
different figures.

NOTE

If you set the burst width manually to be wider than the screen's
display, the vertical white lines will move off the edges of the screen.
This could give misleading results as only the data on the screen can be
measured.

60 Chapter8

Figure 8-2

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

Manually Setting the Burst Width
% Agilent 12:21:01 Mar 23, 2002

DH1 Ch Freq 2.482 GHz
Burst Power #Bluetooth

#BH 58 MHz
Amplitude Threshold

Output Power
M ad Burst Width) Current Data

-12.36 dBm Qutput Pur Max Pt .

Full Burst Hidth: 5 -12.

7. Change the sweep time to display more than one burst at a time.

Press Sweep, Sweep Time, 6200, pys (or 6.2, ms).

The screen display will now show several bursts in a single sweep as
shown in Figure 8-3 below. The burst power measurement will
measure the mean power of the first burst, indicated by the vertical
white lines either around it or, as in this example, within it.

Chapter 8 61

sfeubis renbiq jo

S
[<5]
=
o
[a
[<5]
<
+—
(o))
c
=
>
2]
o
[¢5)
=

£
(4]
c
2
wn
<
=
2
(m)
Y—
o

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

Figure 8-3 Displaying Multiple Bursts
% Agilent 12:29:17 Mar 23, 2082

DHL Ch Freq 2.482 GHz
Burst Power #Bluetooth -

Sweep Time 6.200 ms

i W\uﬁ»J

#BH 58 MHz

Uutput Power Hmplltude Threshold
M ad Burst Width) Current Data

-12.27 dB
Full Burst Hidth:

NOTE Although the burst power measurement still runs correctly when
several bursts are displayed simultaneously, the timing accuracy of the
measurement is degraded. For the best results (including the best
trade-off between measurement variations and averaging time), it is
recommended that the measurement be performed on a single burst.

62 Chapter8

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

Making Statistical Power Measurements
(CCDF)

The following example shows how to make a CCDF measurement on a
W-CDMA signal broadcasting at 1.96 GHz.

o
S,
o
Q
=
=
2]
Q
=
=
@ 3

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer

and set:
= Mode: Spectrum Analysis
= Mode setup, radio standard: 3GPP W-CDMA
= Mode setup, std setup,
Device: BTS
= Center Frequency: 1.96 GHz

2. Select the power statistics (CCDF) measurement
Press MEASURE, Power Stat CCDF.

3. Set the best attenuation and reference level for this measurement on
this signal.

Press Meas Setup, Optimize Ref Level.

Figure 8-4 Power Stat CCDF Measurement on a W-CDMA Signal

5 Agilent
Base CH Freq 1.36 GHz Trig Free

CCOF HCDMA 3GPP |[8

Average Power
-26.34 dBm

4. Store your current measurement trace for future reference.
Press Display, Store Ref Trace.

When the Power Stat CCDF measurement is first made, the
graphical display should show a signal typical of pure noise. This is

Chapter 8 63

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

labelled ‘Gaussian’, and is shown in aqua. Your measurement will
show as a yellow plot. You have stored this measurement plot for
easy comparison with subsequent measurements.

5. Display the stored trace.

-
(D]
S v
o

g &
o D2
S w
- =
c S
.g@
n 0O
© y—
L O
=

Press Display, Ref Trace (On). The stored trace from your last
measurement is displayed as a magenta plot (as shown in Figure
8-5), and allows direct comparison with your current measurement.

Figure 8-5 Storing and Displaying a Power Stat CCDF Measurement

42 Agilent ‘
Base CH Freq 1.36 GHz Trig Free
CCOF g5

Average Power
-35.24 dBm
51.287%

6. Change the measurement bandwidth to 1 MHz.

Press Meas Setup, Meas BW, 1, MHz.

NOTE If you choose a measurement bandwidth setting that the instrument
cannot display, it will automatically set itself to the closest available
bandwidth setting.

64 Chapter8

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

7. Change the number of measured points from 100,000 (100k) to 1,000
(1k).

Press Meas Setup, Counts, 1 kpoints. Reducing the number of points
decreases the measurement time, however the number of points is a
factor in determining measurement uncertainty and repeatability.
Notice how the displayed plot loses a lot of its smoothness. You are
gaining speed but reducing repeatability and increasing
measurement uncertainty.

o
S,
o
Q
=
=8
2]
Q
=
=
@ 3

NOTE The number of plots collected per sweep is dependent on the sampling
rate and the measurement interval. The number of samples that have
been processed will be indicated at the top of the screen. The graphical
plot will also be updated so you will be able to see it getting smoother as
measurement uncertainty is reduced and repeatability improves.

Figure 8-6 Reducing the Number of Measurement Points to 1,000
5 Agilent 13:18:21 Mar 23, 2002

Base Ch Freq 1.36 GHz Trig Free
CCOF #3GPP W-CDMA [S¥

Counts 1.9000BABA0 kpoints

Average Power 1

-32.74 dBm

8. Change the scale of the X-axis to optimize your particular
measurement.

Under Span X Scale, Scale/Div, 1, dB.

Chapter 8 65

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

Making Measurements of Adjacent Channel
Power (ACP)

The following example shows how to make an ACP measurement on a
W-CDMA Base Station signal broadcasting at 1.96 GHz.

-
(D]
S v
o

g &
o D2
S m
——"
c S
'5@
n 0O
© y—
L O
=

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer
and set:

Mode: Spectrum Analysis

Mode setup, radio standard: 3GPP W-CDMA

Mode setup, std setup: BTS

Center Frequency: 1.96 GHz

2. Select the Adjacent Channel Power measurement.
Press MEASURE, ACP.
3. Set the optimum signal reference level for this measurement.

Press Meas Setup, Optimize Ref Level. Your screen should now look
like Figure 8-7.

NOTE This optimization protects against input signal overloads, but does not
necessarily set the input attenuation for optimum measurement
dynamic range.

Figure 8-7 ACP Measurement on a Base Station W-CDMA Signal
% Agient 13:48:12 Mar 23, 2002

Base Ch Freq 1.96 GHz Trig Free

Ad] Channel Pawer 36pp H-cone |

#Atten 4 dB

pra
|

'n-..u,'fw"r**-“rr"

7, e - e

The Frequency Offsets, Channel Integration Bandwidths, and Span

66 Chapter8

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

settings can all be modified. They default to the relevant settings for
the radio standard you have currently selected.

Two vertical white lines indicate the bandwidth limits of the central
channel being measured.

o
S,
o
Q
=
=8
2]
Q
=
=
@ 3

Offsets A and B are designated by the adjacent pairs of red and
yellow lines, in this case: 5 MHz and 10 MHz from the center
frequency respectively.

4. Select the combined spectrum and bar graph view of the results.
Press Trace/View, Combined.
5. View the results using the full screen.

Press Display, Full Screen to display a larger view of the trace as
shown in Figure 8-8.

Figure 8-8 ACP Measurement in Full Screen Display

s Agilent 15:58:53 Oct 8, 2861

#Atten 15 dB

6. Define a new offset.

Press Meas Setup, Offset/Limits, Offset, C, Offset Freq (On), 15, MHz to
set a third pair of offset frequencies.

This third pair of offset frequencies will be offset by 15.0 MHz from
the center frequency and are shown on the screen as the third blue
bar graph from the central channel. An example screen with this
extra pair of frequencies is shown in Figure 8-9. Three further pairs
of offset frequencies (D, E and F) are available and are displayed
similarly.

Chapter 8 67

S
[<5]
=
o
[a
[<5]
<
+—
(o))
c
=
>
2]
o
[¢5)
=

£
(4]
c
2
wn
<
=
2
(m)
Y—
o

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

Figure 8-9 Measuring a Third Adjacent Channel
i Agient 15:52:09 Oct 8, 2001 |

Base Ch Freq 1.96 GHz Trig Free

Adj Channel Pawer =36pp H-coMA [

Offset Freq 15.00000000 MHz '

dBm #Atten

Lower gy

7. Set pass/fail limits for each offset.

Press Offset (A), Neg Offset Limit, =55 dB, Pos Offset Limit, =55 dB,
Offset (B), Neg Offset Limit, —-65 dB, Pos Offset Limit, -65 dB, Offset (C),
Neg Offset Limit, —-65 dB, Pos Offset Limit, —65 dB.

8. Turn the limit test on.

Press Meas Setup, More, Limit Test (press until On is underlined) to
show the results as in Figure 8-10.

Offset A has passed, however Offsets B and C have failed. Failures

are identified by the red letter “F” next to the levels (dBc and dBm)
listed in the lower portion of the window called, “RMS Results”. The
offset bar graph is also shaded red to identify a failure.

68 Chapter8

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

Figure 8-10 Setting Offset Limits

- Agilent 15:54:06 Oct 8, 2881 ‘

Base Ch Freq 1.95 GHz Trig Free

Adj Channel Paner =36PP H-CDNA | I

Neg Offset Limit -65.00 dB

o
=4
o
(]
=
=
2]
«Q
>
wn

NOTE You may increase the repeatability by increasing the sweep time.

Chapter 8 69

S
[<5]
=
o
[a
[<5]
<
+—
(o))
c
=
>
2]
o
[¢5)
=

£
(4]
c
2
wn
<
=
2
(m)
Y—
o

NOTE

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

Making Measurements of Multi-Carrier Power
(MCP)

The following example shows how to make an MCP measurement on
W-CDMA Base Station broadcasting 10 carriers. Eight carriers have
power present at the following frequencies:1.0225 GHz, 1.0175 GHz,
1.0125 GHz, 1.0075 GHz, 992.5 MHz, 987.5 MHz, 982.5 MHz, and 992.5
MHz. This measurement is available with no radio standard selected or
with any of the following radio standards: 1S-95, J-STD-008, all
cdma2000 standards, or W-CDMA.

When Radio Std, None is selected you must manually set most
parameters required to perform this measurement. When selecting
Radio Std, W-CDMA 3GPP, these parameters are already set by the
analyzer.

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer
and set:

= Mode: Spectrum Analysis
= Mode setup, radio standard: 3GPP W-CDMA
= Mode setup, std setup,
Device: BTS
= Center Frequency: 1.0 GHz

2. Select the Multi-Carrier Power measurement.
Press MEASURE, Multi-Carrier Power.

3. Set the optimum signal reference level for this measurement.
Press Meas Setup, Optimize Ref Level.

4. Set the carrier number to 10.
Press Carrier Setup, Carriers, 1, 0, enter.

5. Configure carrier 5 to have no power present.

Press Configure Carriers, Carrier, 5, enter, Carrier Pwr Present, (Press to
underline No).

6. Repeat step 5, configuring carrier 6 to have no power present.
7. Display the results in full screen view. Refer to Figure 8-11.

Press Display, Full Screen.

70 Chapter8

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

Figure 8-11 MCP Measurement on 10 Base Station W-CDMA Carriers

4 Agilent 15:13:39 Apr 15, 2062

im

' ot P
I s "I L
aby/ A ! |
SELETNT Wo p A ol i

o
S,
o
Q
=
=8
2]
Q
=
=
@ 3

GHz

Freq Integ BW
MHz

In this example, the intermodulation falls outside the transmit
channels which are marked by the colored vertical lines. The white
set indicates the reference carrier. The red sets contain the carriers
with power present and the blue lines mark the carriers without
power present. Limits for the upper and lower offsets can also be set
as shown in the example: “Making Measurements of Adjacent
Channel Power (ACP)” on page 66.

8. View the results table of carriers 7-10.
Press Meas Setup, Carrier Result, 7, enter.

9. View the results in a combined spectrum and bar graph. Refer to
Figure 8-12.

Press Trace/View, Combined.

Chapter 8 71

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

Figure 8-12 Combined Spectrum and Bar Graph View

¥ Agilent 16:22:31 Apr 15, 2062

Base Ch Freq 1 GHz Trig Free

Multi-Carrier Pawer z6pp H-coHA [

-
(D]
S v
o

g &
o D2
S m
——"
c S
'5@
n 0O
© y—
L O
=

Carrier 5

10.Save the results file to a disk.

Press File, Save, Type, Measurement Results, Save Now. The results
are stored in a comma separated values format to be viewed by any
personal computer spreadsheet application. All data shown on the
display is included in this file.

72 Chapter8

Managing Files

This section provides information on how to use the analyzer’s file
manager.

73

Managing Files

Assumption The information in this section is provided with the assumption that
you know how to save a file, and how to locate and view catalogs and
files. If you do not, refer to the Getting Started Guide for details.

In this section, you will find the information on the following:
« “Creating a Directory (or sub-directory)”

e “Deleting Files” on page 76

e “Loading a File” on page 78

< “Renaming a File” on page 79

= “Copying a File” on page 80

0
@
=
o
=
>
S
=
©
=

74 Chapter9

Managing Files
Creating a Directory (or sub-directory)

Creating a Directory (or sub-directory)

You can add a directory or sub-directory to either the A floppy disk or
the internal C. drive.

1. Open the Create Directories menu: press File, More, Create Dir.

2. Navigate through the file system until the Pat h: field displays the
desired directory.

3. Press Name and use the Alpha Editor to enter the desired name for
the new directory. To terminate the entry, press the Enter front panel
key.

4. To create the directory, press Create Dir Now. Once the directory is
created, the status bar displays:
Di rect ory <path><name> cr eat ed

Chapter 9 75

0
@
[
o
=
>
S
=
©
=

NOTE

Managing Files
Deleting Files

Deleting Files

You can delete individual files from any directory, as described in the
following procedure; you can also delete all files and directories from a
floppy disk at one time (see page 76).

Deleting One File

1. If you are deleting a file from a floppy disk, ensure that the disk is
not write protected, then place the disk in the analyzer’s floppy
drive.

2. Open the Del et e menu: press File, Delete.

3. Select the type of file you want to delete: press Type, then select the
type you want from the Type directory.

4. Select the drive and directory that contains the file you wish to
delete (the currently selected location appears in the Pat h: field):

Press Dir Select, highlight the desired directory and press Dir Select
again. Continue until you have located the desired directory.

If you are not familiar with how to move among directories and locate
files, refer to the Getting Started guide for details.

5. Highlight the file you want to delete.

6. Press Delete Now. The pop up message Del eting fil e appears on
the display during the operation. When complete, the status bar
displays the message: <path><filename>fi | e del et ed., and the file
no longer appears in the directory.

Deleting All Files and Directories from a Floppy Disk

Use the following steps to delete all previously stored data from a
pre-formatted floppy disk.

1. Ensure that the disk is not write protected, then place it in the
analyzer’s floppy drive (A:\).

2. Press File, More, Delete All. The directory information box is active
(highlighted), and displays the floppy disk volume ([-A-]).

The files on the disk are not displayed at this point. You must use
File, Catalog to see the files.

3. Press Delete All Now. The following message appears in the display
window:
WARNI NG You are about to destroy ALL data on Volune A .
Press Delete all again to proceed or any other key to

76 Chapter9

Managing Files
Deleting Files

abort.
To abort the process, press any key other than Delete All Now.
4. To delete all files and directories, press Delete All Now a second time.

The message Del et e Al |l appears in the display window.

5. After all files and directories are removed, the following message
appears in the status line: Vol ume A del et e conpl et e. (If the disk
is write-protected, the files will not be deleted even though it looks
like it does.)

Chapter 9 77

NOTE

[%2]

Q

[

(@)

=

(@)

©

c

(48]

=
Key Points
when Loading
Trace Files

Managing Files
Loading a File

Loading a File

1.
2.
3.

Reset the analyzer: press Preset, Factory Preset (if present).
Open the Load menu: press File, Load.

From the Load menu, select the type of file you want to load.

Not all file types can be loaded back into the analyzer: Screen files and
CSV (comma separated value) cannot be loaded. Screen and CSV files
are designed for use with a PC.

4.
5.

Select the directory where your file is located.
Select (highlight) the file you want to load into the analyzer.
For a state file, skip this step.

For a trace file, select the trace into which you wish to load the file.
For example, Destination, Trace 2.

Press Load Now to load the specified file. The status bar reads:
<path><file> fil e | oaded.

Because the state of the analyzer is saved along with the trace, when
the trace is loaded, all of the settings and annotations are restored to
the values displayed when the trace was originally stored.

The trace is loaded in View mode so that it does not update; the data
remains on screen for printing, analysis, and so on.

78

Chapter9

Managing Files
Renaming a File

Renaming a File

N o ok~ N

Open the Renane menu: press File, Rename.

Open the Type menu: press Type.

From the Type menu, select the type of file you want to rename.
Select the drive and directory where the file is located.

Select the file you want to rename.

Open the Al pha Edi t or menu: press Name.

Use the editor to rename the file (the Name: field is limited to eight
characters), and press the Enter front panel key to terminate the
entry.

Press Rename Now: the file is renamed and visible within the
directory displayed on the analyzer. The status line displays the
message:

<path><old filename>fil e renamed t o <path><new filename>

Chapter 9 79

Managing Files
Copying a File

Copying a File
1. Open the Copy menu: press File, Copy.

This menu displays two directory boxes, labeled From and To:
directly above the boxes. See Figure 9-1.

Figure 9-1 Copy Menu

5 Agilent 12:55:57 Feb 7, 2000 RL
File Copy
Mame: RENAME.TRC
E Show Type: Al
LCLD From: C:\STARTA
c Name Type Size Modified
(@) . DIR “~Up~
g TRACE®@14 Csy 19782 01/728/80 B4:53 p
< REYFM GIF 12985 01/26/08 @454 p
S SCREN@15 GIF 12985 01/26/608 @454 p
RENAME TRC 9679 B2/097/80 12:50 p
To:
Mame Type Modified
. DIF
COPYSCRM GIF 12/38/93 B2:14 p
FIG23 GIF a1/18/88 11:33 a
SCRENBBS GIF a1/18/88 B6:12 p
SCRENGBE GIF 14342 01/18/80 86:15 p
lsed: 183KB Free: 1240KB

2. Place a formatted 1.44 MB floppy disk into the A: drive.

NOTE Ensure that the disk is not write-protected.

3. Open the Tr ace menu: press Type, Trace.
4. From the Tr ace menu, select the type of file you want to copy.

5. If the Dir menu key does not have Fr omunderlined, press to
underline it. This highlights the From field (the directory from
which you will copy)

6. Select the desired directory and highlight the file that you wish to
copy.

7. Press Dir to underline To.
The To: field highlights. This is the directory to which you will copy.
8. Select the desired directory and press Copy Now.

The message Copyi ng fil e appears. When complete, the status bar
displays: <directory><filename> fi |l e copi ed.

80 Chapter9

18

sajdwex3 bulwweaboud

0T

Programming Examples
Examples Included:

Examples Included:

= “Using Marker Peak Search” on page 83

= “Saving and Recalling Instrument State Data” on page 86

= “Making an ACPR Measurement in cdmaOne” on page 90

= “Performing Alignments and Getting Pass/Fail Results” on page 93
= “Saving Binary Trace Data (Requires Option B7J)” on page 96

e “Using the CALCulate:DATA:COMPress? Command (Requires
Option B7J)” on page 100

e “Using C Over Socket LAN (UNIX)” on page 106

e “Using C Over Socket LAN (Windows NT)” on page 126

= “Using Java Programming Over Socket LAN” on page 129

= “Using the VXI Plug-N-Play Driver in LabView” on page 138

Information About These Examples

e These examples use the SCPI programming commands.
= Most of the examples are written for an IBM compatible PC.
e There are examples using GPIB and LAN.

= Most of the examples are written in C using the Agilent VISA
transition library.

The VISA transition library must be installed and the GPIB card
configured. The Agilent I/O libraries contain the latest VISA
transition library and is available at: ww. agi | ent. conmliolib

< The examples are also available on the Agilent Technologies PSA
Series documentation CD-ROM. They are also available at the URL
http://ww:. agi | ent.coni fi nd/ psa

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

There is some additional information about the basics of using the C
programming language in the C Programming Using VTL section in the
Programming Fundamentals chapter of the User’'s and Programmer’s
Reference.

There are additional examples that use the VXI plug&play instrument
drivers. These examples are included in the on-line documentation in
the driver itself. The driver allows you to use several different
programming languages including: VEE, LabView, C, C++, and BASIC.
The software driver can be found at the URL

http://ww. agi | ent. com fi nd/ psa

82 Chapter 10

Programming Examples
Using Marker Peak Search

Using Marker Peak Search

This is the C programming example peaksrch.c.

Example:

[REE AR A KRR KRk A AR KRR AR KKKk kR kAR KKK IR AR A A A KKK R Rk
/* peaksrch.c */
/* Agil ent Technol ogi es 2001 */
/* */

[* Using Marker Peak Search and Peak Excursion */
/* */
/* This exanple is for the E444xA PSA Spectrum Anal yzers */
/* */

/* This C programmi ng exanpl e does the fol | ow ng. */
/* */
[* - QOpen a GPIB session at address 18 */
[* - Select Spectrum Anal ysis Mde */
/* - Reset & Uear the Anal yzer */
/[* - Set the anal yzer center frequency and span */

[* - Set the input port to the 50 Mz anplitude reference */

[* - Set the anal yzer to single sweep node */
[* - Pronpt the user for peak excursion |evel in dBm */
[* - Set the peak threshold to user defined | evel */
[* - Trigger a sweep and wait for sweep to conpl ete */
/* - Set the marker to the maxi mum peak */
[* - Query and read the narker frequency and anplitude */
/* - dose the session */

/**/

#i ncl ude <wi ndows. h>
#i ncl ude <stdi o. h>

#i ncl ude "visa. h"

Vi Sessi on defaul t RV vi PSA;

Vi Status errStatus;

Chapter 10 83

Programming Examples
Using Marker Peak Search

voi d main()

{
/ *Program Vari abl es*/
Vi Status vi Status = 0;
char cEnter = 0;
int iResult = O;
doubl e dMar ker Freq
doubl e dMar ker Anpl = 0;
float fPeakExcursion =0;
long | Qoc = OL;

1
e

char *psaSetup = // PSA setup initialization
"IINST SA " /1l Change to Spectrum Anal ysi s node
"*RST; *CLS; " /'l Reset the device and clear status
": SENS: FREQ CENT 50 MHz;"// Set center freq to 50 M&
": SENS: FREQ SPAN 50 MHz;"// Set freq span to 50 Mt
": SENS: FEED AREF;"// Set input port to internal 50 Mtz ref
":INIT: CONT 0;"// Set analyzer to single sweep node

4 ": CALC MARK: PEAK: THR -90";// Set the peak thresold to -90 dBm
=3
IS
<
x
L
E’ /*Cpen a GPIB session at address 18.*/
E vi St at us=vi penDef aul t RV &lef aul t RV) ;
S
§, vi St at us=vi Qpen(def aul t RM " GPI BO: : 18", VI _NULL, VI _NULL, &vi PSA);
a i f(viStatus)
{

printf("Coul d not open a session to GPIB device at address 18!\ n");
exit(0);

/*D splay the program headi ng */

printf("\n\t\t Marker Program\n\n");

/* Send setup commands to instrunment */
vi Printf(vi PSA "%\n", psaSet up);

84 Chapter 10

Programming Examples
Using Marker Peak Search

[*User enters the peak excursion value */
printf("\t Enter PEAK EXCURSION | evel in dBm ");
scanf("%", & PeakExcursi on);

/*Set the peak excursion*/
vi Printf(viPSA "CALC. MARK: PEAK: EXC %f DB \ n", f PeakExcur si on);

[*Trigger a sweep and wait for conpletion*/
viPrintf(viPSA"INT: I MM *WAI\Nn");

/*Set the marker to the maxi num peak*/
vi Printf(viPSA "CALC MARK: MAX \ n");

/*Query and read the marker frequency*/
vi Quer yf (vi PSA, "CALC MARK: X? \n", "% f", &Mar ker Freq);
printf("\n\t RESWLT: Marker Frequency is: %f Mz \n\n", dVarker Freq/ 10e5);

/*Query and read the marker anplitude*/
vi Quer yf (vi PSA " CALC. MARK: Y2\ n", "% f", &Mar ker Anpl) ;
printf("\t RESULT: Marker Anplitude is: %f dBm\n\n", dvarker Anpl);

/*d ose the session*/
vi d ose(vi PSA);
vi 0 ose(defaul tRV) ;

Chapter 10 85

Programming Examples
Saving and Recalling Instrument State Data

Saving and Recalling Instrument State Data

This is the C programming example State.c

Example:

/*************'k'k'k***

* State.c

* Agilent Technol ogies 2001

*

* PSA Series Transnitter Tester using VISA for I/0O

* This programshows how to save and recall a state of the instrument

*

***/

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <coni o. h>

#i ncl ude "vi sa. h"

void main ()

{
[*program vari abl es*/
Vi Session defaul t RM vi VSA
Vi Status vi Status= 0;

/*open session to GPIB device at address 18 */
vi St at us=vi QpenDef aul t RM (&def aul t RV ;
vi Status=vi Qpen (defaul tRM "GPl BO::18::INSTR', VI _NULL, VI _NULL, &viVSA);

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

/*check openi ng session sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

86 Chapter 10

Programming Examples
Saving and Recalling Instrument State Data

/*set the instrunent to SA node*/
vi Printf(viVSA "INST SAn");

/*reset the instrument */
vi Printf(viVSA "*RST\n");

/[*set the input port to the internal 50Mz reference source*/
vi Printf(viVSA "SENS: FEED AREF\n");

/*tune the anal yzer to 50MHz*/
vi Printf(viVSA "SENS: FREQ CENT 50E6\n");

/*change t he span*/
vi Printf(viVSA "SENS: FREQ SPAN 10 MHZ\n");

/*turn the display |ine on*/
vi Printf(viVSA "D SP: WND: TRACE: Y: DLI NE: STATE O\ n") ;

/*change the resol uti on bandw dt h*/
vi Printf(viVSA "SENS: SPEC. BAND: RES 100E3\n");

/*change the Y Axis Scal e/ D v*/
vi Printf(viVSA "D SP: WND: TRAC: Y: SCAL: PDI V 5\ n");

[*Change the display refernece |evel */
vi Printf(viVSA "D SP: WND: TRAC: Y: SCAL: RLEV -15\n");

/*trigger the instrument*/
viPrintf(vivsA "INT: 1M *WAI\Nn");

/*save this state in register 10.

I Carefull this will overwite register 10*%/

vi Printf(viVSA "*SAV 10\n");

[*di spl ay message*/

Chapter 10 87

Programming Examples
Saving and Recalling Instrument State Data

printf("PSA Programm ng exanpl e showi ng *SAV, *RCL SCPI comrands\ n");
printf("used to save instrunment state\n\t\t---------coooon ");
printf("\n\nThe instrument state has been saved to an internal register\n");
printf("Pl ease observe the display and notice the signal shape\n");

printf("Then press any key to reset the
instrument\n\t\t------------------------ ");

[*wait for any key to be pressed*/

getch();

/*reset the instrunent */
vi Printf(viVSA, "*RST\n");

/*set again the input port to the internal 50Mz reference source*/
vi Printf(viVSA "SENS: FEED AREF\ n");

[*di spl ay message*/
printf("\n\nThe instrument was reset to the factory default setting\n");
printf("Notice the abscence of the signal on the display\n");

printf("Press any key to recall the saved
state\m\t\t--------------oo o ");

[*wait for any key to be pressed*/

getch();

/*recall the state saved in register 10*/
vi Printf(viVSA, "*RCL 10\n");

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

[*di spl ay message*/
printf("\n\nNotice the previous saved instrunent settings were restored\n");

printf("Press any key to termnate the
programn\t\t------------------------ \n\n");

[*wait for any key to be pressed*/

getch();

/*reset the instrunent */

88 Chapter 10

Programming Examples
Saving and Recalling Instrument State Data

vi Printf(viVSA "*RST; *wai\n");

/*Set the instrunent to continuous sweep */
viPrintf(viVSA "INT: CONT 1\n");

/* cl ose session */
vi d ose (ViVSA);
vid ose (defaultRV);

Chapter 10 89

Programming Examples
Making an ACPR Measurement in cdmaOne

Making an ACPR Measurement in cdmaOne

This is the C programming example ACPR.c

Example:
/***
* ACPR c
* Adj acent Channel Power Measurenent using Power Suite
* Agi | ent Technol ogi es 2001
*

* I nstrument Requi renent s:

* PSA with firmware version >= A 02.00 or

* ESA with firmare version >= A 08. 00

*

* Not e: You can sel ect which ACPR radi o standard you would |i ke by

* changi ng the standard for the RAD O STANDARD command.

* Thi s exanpl e sets the radio standard to | S95.

*

* Note: For PSA, ensure that you are SA node before running this program

***/

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#incl ude <string. h>

#i ncl ude "vi sa. h"

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

void main ()

{

/*program vari abl e*/
Vi Session defaul t RM vi PSA;

Vi Status vi Status = 0;
Vi Char _M _FAR cResul t[2000] = {0};
int i Num =0;

int i SapPnts = 401,

doubl e freq, val ue;

90 Chapter 10

Programming Examples
Making an ACPR Measurement in cdmaOne

static Vi Char *cToken ;

| ong | Count =0L;

char sTracelnfo [1024]= {0};

FI LE *f Dat aFi | e;

unsi gned | ong | BytesRetri eved;

char *psaSetup = // PSA setup initialization
"*RST; *CLS;" // Reset the device and cl ear status
":INIT: CONT 0;"// Set anal yzer to single sweep node
": RADI O STANDARD | S95";// Set the Radio Standard to |S95

/*open session to GPIB device at address 18 */
vi St at us=vi QpenDef aul t RM (&def aul t RV ;
vi St at us=vi Cpen (defaul tRM "GPl BO::18:: 1 NSTR', M _NULL, VI_NULL, &vi PSA);

[*check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

}

/*Increase tineout to 20 sec*/

vi Set Attri but e(vi PSA VI _ATTR_TMD VALUE, 20000) ;

/*Send setup commands to instrument */
vi Printf(viPSA "%\n", psaSet up);

[*CGet the center freq fromuser*/

printf("Wat is the center carrier frequency in Mz?2\n");
scanf("%f", &req);

/*Set the center freqg*/
viPrintf(viPSA "freqg:center %f MHZ\n",freq);

/*Performan ACPR neasur enent */
vi Queryf (vi PSA "9\ n", "%#t","READ: ACP?; *wai " , & Num, cResult);

Chapter 10 91

Programming Examples
Making an ACPR Measurement in cdmaOne

/*Renove the "," fromthe ASC | data for anal yzi ng data*/
cToken = strtok(cResult,",");
/*Save data to an ASC Il to a file, by renoving the "," token*/

fDataFi | e=fopen("C\\ACPR txt","w'");

fprintf(fDataFile,"ACPR exe Qutput\nAgilent Technol ogi es 2001\ n\ n");
fprintf(fDataFile,"Please read Prograner’s Reference for an\n");
fprintf(fDataFile,"explanation of returned results.\n\n");

while (cToken !'= NULL)

{
| Count ++;
val ue = atof (cToken);
fprintf(fDataFile, "\tReturn val ue[%l] = %f\n",| Count, val ue);
cToken =strtok(NULL,",");
}

fprintf(fDataFile,"\nTotal nunber of return points of ACPR neasurenent :[%l]
\n\n", | Count);

fclose(fDataFile);

[*print message to the standard output*/
printf("The The ACPR Measurenent Result was saved to C\A\\ACPR txt file\n\n");

/* O ose session */
vi d ose (vi PSA);
vi d ose (defaul tRV);

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

92 Chapter 10

Programming Examples
Performing Alignments and Getting Pass/Fail Results

Performing Alignments and Getting Pass/Fail
Results

This is the C programming example SerAlign.c

Example:

/****************'k'k'k**

*

*

*

*

*

SerAlign.c
Serial Poll Alignment Routine
Agi | ent Technol ogi es 2001

I nstrument Requirements:
PSA Seri es Spectrum Anal yzer or
ESA Series Spectrum Anal yers or
VSA Series Transnmitter Tester

Thi s program denonstrates how to
1) Performan instrument alignment.
2) Poll the instrument to determ ne when the operation is conplete.

3) Query to determine if the alignnent was successfuly conpl et ed.

**/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <wi ndows. h>

#i ncl ude "visa. h"

void main ()

{

/ *program vari abl es*/

Vi Sessi on defaul tRM vi PSA;
Vi Status viStatus = 0;
Viulnt16 esr, stat;

long | Result = 0;

long | Qoc = 0O;

Chapter 10

93

Programming Examples
Performing Alignments and Getting Pass/Fail Results

char cBEnter = 0;

/*open session to GPIB device at address 18 */
vi St at us=vi QpenDef aul t RM (&def aul t RV) ;
vi Status=vi Qpen (defaul tRM "GPl BO::18::1NSTR', VI _NULL, VI _NULL, &i PSA);

/*check openi ng session sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

/*increase tineout to 60 sec*/

vi Set Attri bute(vi PSA, VI _ATTR TMD VALUE, 60000) ;

/[*A ear the anal yzer*/
vi d ear (vi PSA) ;

[*A ear all event registers*/
vi Printf(vi PSA, "*CLS\n");

/* Set the Status Event Enable Register */
vi Printf(vi PSA, "*ESE 1\n");

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

[*Initiate sel f-alignnent*/
vi Printf(vi PSA, "CAL: ALL\n");

/* Send the (peration conpl ete command so that the
stand event register will be set to 1 once
the pending alignnent conmand is conplete */

vi Printf(vi PSA, "*CPQN");

[* print message to standard output */

printf("Perfornmng self-alignment.\n");

94 Chapter 10

Programming Examples
Performing Alignments and Getting Pass/Fail Results

/* Serial pole the instrument for operation conplete */
whi | e(1)
{
vi Queryf (vi PSA "*ESR\n", "% d", &esr);
printf(".");
if (esr & 1) break;//look for operation conplete bit
Sl eep (1000);// wait 1000ms before polling again

/[* Query the Status Questionabl e Condition Register */
vi Quer yf (vi PSA, ": STAT: QUES: CAL: COND\n", "% d", &stat);

/[*Determne if alignment was successful */
if (stat)

printf("\nAignment not successful\n\n");
el se

printf("\nAlignment successful\n\n");

/*reset tineout to 5 sec*/
vi Set Attri but e(vi PSA VI _ATTR_TMD VALUE, 5000) ;

[*print message to the standard output*/
printf("Press Return to exit program\n\n");
scanf ("9%", &Enter);

/* d ose session */
vi d ose (viPSA);
vi d ose (defaultRV);

Chapter 10 95

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Saving Binary Trace Data (Requires Option B7J)

Saving Binary Trace Data (Requires Option
B7J)

This is the C programming example Trace.c

Example:

/*************'k'k'k***

*

*

*

*

Trace. c
Agi | ent Technol ogi es 2001

I nstrument Requirement s:
E444xA with option B7J and firmare version >= A 02.00 or
E4406A with firnmware version >= A 05. 00

Thi s Program shows how to get and save binary trace data in Basic node

The results are saved to C\trace. txt

***/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <w ndows. h>

#i ncl ude "vi sa. h"

void main ()

{

/*program vari abl e*/
Vi Sessi on defaul t RM vi PSA
Vi Status vi Status= O;
char sBuffer[80]= {0};
char dummyvar;

FI LE *f TraceFi | e;

| ong | Nunber Poi nt s= 0;
| ong | Nunber Byt es= O;
I ong | Lengt h= 0;

long i = 0O;

long | Qpc = OL;

96 Chapter 10

Programming Examples
Saving Binary Trace Data (Requires Option B7J)

unsi gned | ong | BytesRetri eved;
Vi Real 64 adTraceArray[10240] ;

char *psaSetup =/* setup conmands for VSA/ PSA */
":INST BASIC, "/* Set the instrunent node to Basic */
"*RST; *CLS; "/ * Reset the device and clear status */
"IN T: CONT 0;"/* Set anal yzer to single neasurenent node */
": FEED AREF; "/* set the input port to the internal
50MHz reference source */
": Dl SP: FORM ZOQOML; "/ * zoom t he spectrum di splay */
": FREQ CENT 50E6;"/* tune the anal yzer to 50MHz */
" FORM REAL, 64;"/* Set the ouput format to a binary format */
": FORM BORD SWAP; "/* set the binary byte order to SWAP (for PC) */

SINT:IMM";/* trigger a spectrum measurenent */

/*open session to GPIB device at address 18 */
vi St at us=vi QpenDef aul t RM (&def aul t RV ;
vi St at us=vi (pen (defaul tRM "GPl BO::18:: 1 NSTR', M _NULL, VI_NULL, &vi PSA);

[*check openi ng sessi on sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

/* Set I/Otineout to ten seconds */

vi Set Attri but e(vi PSA VI _ATTR_TMD VALUE, 10000) ;

/* Send setup conmmands to instrunment */
vi Printf(viPSA "%\n", vsaSet up);

/* Query the instrunent for Cperation conplete */
vi Quer yf (vi PSA "*CQPC\ n", "9%l", & pc);

/* fetch the spectrumtrace data*/

Chapter 10

97

Programming Examples
Saving Binary Trace Data (Requires Option B7J)

vi Printf (vi PSA, " FETC. SPEC7?\ n") ;

[*print message to the standard output*/

printf("Getting the spectrumtrace in binary format...\nPl ease wait...\n\n");

/* get nunber of bytes in |length of postceeding trace data
and put this in sBuffer*/
vi Read (vi PSA, (Vi Buf)sBuffer, 2, & Byt esRetri eved);

/* Put the trace data into sBuffer */
vi Read (vi PSA, (Vi Buf)sBuffer,sBuffer[1] - 'O, & BytesRetri eved);

/* append a null to sBuffer */
sBuffer[| BytesRetrieved] = 0;

/* convert sBuffer fromASCI| to integer */
| Nunber Bytes = atoi (sBuffer);

/* cal cul ate the nunber of points given the nunber of byte in the trace
REAL 64 binary format neans each nunber is represented by 8 bytes*/
| Nunber Poi nts = | Nunber Byt es/ si zeof (Vi Real 64) ;

/*get and save trace in data array */
vi Read (vi PSA, (Vi Buf)adTraceArray, | Nunber Byt es, & Byt esRetri eved) ;

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

/* read the term nator character and di scard */
vi Read (vi PSA, (Vi Buf)sBuffer,1, & Length);

[*print message to the standard output*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */
do
{
viPrintf (viPSA "SYST:ERR?\n");/* check for errors */
vi Read (vi PSA, (Vi Buf)sBuffer, 80, & Length);/* read back |ast error nessage

98 Chapter 10

Programming Examples
Saving Binary Trace Data (Requires Option B7J)

*/
sBuffer[l Length] = 0O; /* append a null to byte count */
printf("9%\n",sBuffer); /* print error buffer to display */
} while (sBuffer[1] !'="0");

/* set the anal yzer to continuous node for nmanual use */
vi Printf(viPSA "INT: CONT 1\n");

/*save trace data to an ASA | file*/
fTraceFi | e=fopen("C: \\Trace. txt","w");
fprintf(fTraceFile, "Trace.exe Qutput\nAgilent Technol ogi es 2001\ n\ n");

fprintf(fTraceFile,"List of % points of the averaged spectrum
trace:\n\n", | Nunber Poi nts) ;

for (i=0;i<lNunberPoints;i++)

fprintf(fTraceFile, "\t Amplitude of point[%l] = %2|f
dBm n",i+1, adTraceArray[i]);

fcl ose(fTraceFil e);

[*print message to the standard output*/

printf("The %l trace points were saved to C\\Trace.txt
file\n\n", | Nunber Poi nts);

/* Send message to standard out put */
printf("\nPress Enter to set analyzer’s input port back to RF.\n");
scanf (" %", &lunmmyvar);

/* set the input port to RF */
vi Printf(viPSA "feed rf\n");

/* d ose session */
vi d ose (viPSA);
vi d ose (defaultRV);

Chapter 10 99

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

Using the CALCulate:DATA:COMPress?
Command (Requires Option B7J)

This is the C programming example calcomp.c

Example:
[R Rk Rk kK kKK kR Kk Rk Rk ko kR Kk R kK Rk kK Rk ko K kK kR kK Kk
cal conp.c
* Agi | ent Technol ogi es 2001
*
* Thi s program denonstrates the process of using the Waveform
* neasur emrent and the CALC DATAO: COVP? RVB conmand to return the power
* of 1 to 450 consecutive GSM EDGE bursts (one burst per frane).
* The data results are placed in an ASCII file, C\cal cconp.txt
*
* I nstrument Requi renent s:
* E444xA with option B7J and firmaare version >= A 02.00 or
* E4406A with firmare version >= A 05.00 or
*
3 * Signal Source Setup:
E * Turn on 1 slot per GSM EDGE frane.
L% * Set frane repeat to Continous.
E’ * Set the signal anplitude to -5 dBm
% * Set the signal source frequency to 935.2 M&
g., *
o * CALC. DATAO: COVP? RMS par anet ers:
* sof fset = 25us (This avoi ds averagi ng data poi nts when the bur st
* is transitioning on.)
* l ength = 526us (Period over which the power of the burst is averaged)
* roffset = 4.165 ns (Repition interval of burst. For this exanple
* it is equal to one GSMframe: 4.165 ns.)

***/
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <w ndows. h>

100 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

#i ncl ude <mat h. h>

#i ncl ude "visa. h"

void main ()
{
/ *program vari abl e*/
Vi Sessi on defaul t RM vi PSA;
Vi Status vi Status= 0;
Viulnt16 stb;
FI LE *f Dat aFi | e;
| ong |t hrowaway, | bur st s;
| ong | Nunber Poi nt s= 0;

| ong | Nurmber Byt es= 0;

I ong | Length =0

I ong i = 0;
long | Qoc = OL;

doubl e sweeptine = 0;

unsi gned | ong | BytesRetri eved;
Vi Real 64 adDat aArray[500] ;

Vi Real 64 adPower Arr ay[500] ;
char sBuffer[80]= {0};

char *basi cSetup = // neasurenent setup commands for VSA/ PSA
":INST: SEL BASIC "// Put the instrunent in Basic Mde
"*RST;"// Preset the instrunent
"*QS; " //dear the status byte
":DISP: ENAB 0;"// Turn the D splay off (inproves Speed)
" FORM REAL, 64; "// Set the ouput format to binary
"1 FORM BCRD SWAP; "// set the binary byte order to SWAP (for PQ
"1 CONF: WAV, "// Changes neasurenent to Waveform

":INIT: CONT 0;"// Puts instrunent in single neasurenent node
" CAL: AUTO OFF;"//Turn auto align off

" FREQ CENTER 935. 2MHz; "// Set Center Freq to 935. 2M&

" WAV: ACQ PACK MED; "// Set Dat aPacking to Medi um

" WAV: BAND: TYPE FLAT; "//Select Flattop RBWFilter

"I WAV: DEC. FACT 4;"// Set Decimation Factor to 4

Chapter 10 101

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

" WAV: DEC. STAT ON "// Turn Decimati on On

": D SP: WAV: WNDL: TRAC Y: RLEV 5;" // Set referance level to 5 dBm
"I WAV: BWD: RES 300kHz; "// Set Res bandwith filter to 300kHz

" PONRF: ATT 5;"//Set 5dB of internal attenuation

":WAV: TRIG SOR | F;"//Set Trigger source to |F burst
":TRRGSEQ I F: LEV -20;";//Set IF Trig level to -20dB

/*open session to GPIB device at address 18 */
vi St at us=vi QpenDef aul t RM (&def aul t RV ;
vi Status=vi pen (defaultRv "GPl BO:: 18", VI_NULL, VI _NULL, &vi PSA) ;

[*check openi ng session sucess*/

i f(viStatus)

{
printf("Could not open a session to GPIB device at address 18!\n");
exit(0);

/* Set 1/Otineout to ten seconds */

vi Set Attribute(vi PSA, VI _ATTR TMD VALUE, 10000) ;

vi A ear(vi PSA);//send device clear to instrunent

[*print message to the standard output*/

printf("Enter nunber of bursts (1 to 450) to cal cul ate nean power for: ");
scanf("%d", & bursts);

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

/* Send setup conmmands to instrunment */
vi Printf(vi PSA "%\ n", basi cSet up);

/* Calculate sweep tine and set it*/
sweept i ne=4. 6153846* | bur st s;
vi Printf(vi PSA ": WAV: SWE: TI ME % s\ n", sweepti ne);

/* Oear status event register */
vi Quer yf (vi PSA, " STAT: CPER EVENT?\ n", "% d", & t hr onavay) ;

102 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

/* Initiate the waveform neasur enent */
viPrintf(viPSA"INT: 1M Nn");

/* Query the instrunent for Cperation conplete */
vi Quer yf (vi PSA "*CQPC\ n", "%l", & pc);

/* Have the instrument calculate the mean RVE |/ Q vol tage in each bur st
(VW will convert these discreate values into Mean dBm Power val ues) */
viPrintf (viPSA ":CALC DATAO: COW? rns, 25E- 6, 526E- 6, 4. 61538461538E- 3\ n");

/* Serial poll the instrument to determ ne when Message Avail abl e
Status Bit is set. The instrunent’s output buffer will then

contai n the neasurenent results*/

i =0;
whi | e(1)
{
i ++;
vi ReadSTB(vi PSA, &tb); //read status byte
if (stb & 16) break; /11 ook for nessage available bit
Sleep (20); // wait 100ns before polling again
}

[*print message to the standard output*/
printf("\nMessage Available statuts bit set after %d serial poles.\n\n",i);

printf("Cetting the burst data in binary format...\nPlease wait...\n\n");

/* get nunber of bytes in length of postceeding data
and put this in sBuffer*/
vi Read (vi PSA, (Vi Buf)sBuffer, 2, & BytesRetrieved);

/* Put the returned data into sBuffer */
vi Read (vi PSA, (Vi Buf)sBuffer,sBuffer[1] - 0, & BytesRetrieved);

/* append a null to sBuffer */
sBuffer[I BytesRetri eved] = O;

Chapter 10 103

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

/* convert sBuffer fromASCI| to integer */
| Nunber Bytes = atoi (sBuffer);

/*cal cul ate the nunber of returned val ues given the nunber of bytes.
REAL 64 binary data means each nunber is represented by 8 bytes */

| Nunber Poi nts = | Nunber Byt es/ si zeof (Vi Real 64) ;

/*get and save returned data into an array */
vi Read (vi PSA, (Vi Buf) adDat aArr ay, | Nunber Byt es, & Byt esRetri eved);

/* read the term nator character and di scard */
vi Read (vi PSA, (Vi Buf)sBuffer, 1, & throwaway);

[*print message to the standard output*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */

do
{
vi Printf (viPSA "SYST: ERR\n"); /* check for errors */
vi Read (vi PSA, (Vi Buf)sBuffer, 80, & Length);/* read back | ast error nessage */
sBuffer[l Length] = 0; /* append a null to byte count */
printf("9%\n",sBuffer); [* print error buffer to display */
} while (sBuffer[1] '="'0");

[* Turn the Display of the instrument back on */
vi Printf(vi PSA "Dl SP: ENAB 1\n");

/*save result data to an ASA | file*/

f Dat aFi | e=f open(" C \\cal cconp. txt","w');

fprintf(fDataFile,"Cal cconp. exe Qut put\nAgilent Technol ogi es 2001\ n\n");
fprintf(fDataFile, "Power of %l GSM EDGE bursts:\n\n", | Nunber Poi nts);

for (i=0;i<INunberPoints;i++)

{

/* Convert RMVS voltage for each burst to Mean Power in dBm*/

104 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)

adPower Array[i]=10*1 og1l0(10*adDat aArray[i]*adDat aArray[i]);

fprintf(fDataFile, "\t Power of burst[%l] = %2lf
dBm n", i +1, adPower Array[i]);

}
fclose(fDataFile);
[*print message to the standard output*/

printf("The %l burst powers were saved to C \\cal cconp.txt
file.\n\n", | Nunber Points);

vi d ose (viPSA);
vi d ose (defaultRV);

Chapter 10 105

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (UNIX)

Using C Over Socket LAN (UNIX)

This C programming example (socketio.c) compiles in the HP-UX UNIX
environment. It is portable to other UNIX environments with only
minor changes.

In UNIX, LAN communication via sockets is very similar to reading or
writing a file. The only difference is the openSocket() routine, which
uses a few network library routines to create the TCP/IP network
connection. Once this connection is created, the standard fread() and
fwrite() routines are used for network communication.

In Windows, the routines send() and recv() must be used, since
fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the
response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your UNIX workstation or
Windows 95 PC, or from within a script.

This program is also available on your documentation CD ROM.

Example:

/***************'k'k'k'k**

* $Header: socketio.c,v 1.5 96/10/04 20:29:32 roger Exp $

* $Revi sion: 1.

5%

* $Date: 96/10/04 20:29:32 $

* $Contributor:

* $Description:

LSID, MD $

Functions to talk to an Agilent E4440A spectrum

anal yzer via TCP/I P. Uses command-|ine arguments.

A TCP/ I P connection to port 5025 is established and
the resultant file descriptor is used to "talk" to the

i nstrument using regul ar socket |/O nechanisns. $

106 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

* E4440A Exanpl es:

* Query the center frequency:

* lanio 15.4.43.5 'sens: freq: cent?

* Query X and Y val ues of narker 1 and marker 2 (assumes they are on):

* | ani 0 nyinst ’cal c: spec: markl: x?;y?; :cal c:spec: nmark2: x?; y?’

* Check for errors (gets one error):

* | ani o nyinst 'syst:err?

* Send a list of commands froma file, and nunber them

* cat scpi_cmds | lanio -n nyinst

LR RS SRS R R SRR EEEEEEEEREEES

* This program conpiles and runs under

* - HP-UX 10.20 (UNIX), using HP cc or gcc:

* + cc -Aa -O-o0lanio lanio.c

* + gcc -Vall -O-o0lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NT 3.51, using Mcrosoft Visual G++ 4.0

* + Be sure to add WBOCK32.LIB to your list of libraries!
* + Conpile both | anio.c and getopt.c

* + Consider re-naming the files to | anio.cpp and getopt.cpp

* Consi der at i ons:

* - Oh NI X systens, file I/O can be used on network sockets.

* Thi s makes programm ng very convenient, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |lower |evel read() and wite() calls.

* - In the Wndows environnent, file operations such as read(), wite(),
* and cl ose() cannot be assuned to work correctly when applied to

Chapter 10 107

Programming Examples
Using C Over Socket LAN (UNIX)

* sockets. Instead, the functions send() and recv() MJST be used.
*/

[* Support both Wn32 and HP-UX UNI X environnent */

#ifdef _WN32 /[* Visual C++ 4.0 will define this */
define WNSOXK
#endi f

#i f ndef W NSOCK
ifndef HPUX SOURCE
define HPUX SOURCE

endif

#endi f

#i ncl ude <stdio. h> [* for fprintf and NULL */
#i ncl ude <string. h> /* for mencpy and nenset */
#include <stdlib. h> [* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <w ndows. h>

ifndef W NSCCKAPI

1include <wi nsock.h> // BSD-style socket functions
endif

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

#else /* UN X with BSD sockets */

include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr _in */
include <netdb. h> /* for gethostbynane */
define SOCKET_ERRCR (-1)

define I NVALI D SOCKET (-1)

108 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

typedef int SOCKET;

#endi f /* WNSOK */

#i f def W NSOCK
/* Declared in getopt.c. See exanple prograns disk. */
extern char *optarg;
extern int optind;
extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd. h> [* for getopt(3C) */
#endi f

#def i ne COMVAND_ERROR (1)
#define NO CMD ERROR (0)

#def i ne SCPI _PCRT 5025
#def i ne | NPUT_BUF_SI ZE (64*1024)

/***************'k**

* Di splay usage

**/

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<command>]\n", basenane);
fprintf(stderr," % [-nqu] <hostname> < stdin\n", basenane);
fprintf(stderr," -n, nunber output lines\n");
fprintf(stderr," -q, quiet; do NOT echo lines\n");
fprintf(stderr," -e, show nmessages in error queue when done\n");

}

#i fdef WNSOK

int init_w nsock(void)

Chapter 10 109

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (UNIX)

{
WORD wer si onRequest ed;
WEADATA wsaDat a;
int err;
wWer si onRequested = MAKEWORD(1, 1);
wWer si onRequest ed = MAKEWORD(2, 0);
err = WBASt art up(wWer si onRequest ed, &wsaDat a);
if (err 1=0) {
/* Tell the user that we couldn’t find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");
return -1;
}
return O;
}

int close_w nsock(voi d)

WBAA eanup();
return O;

}
#endi f /* WNSOCK */

/***
*

> $Function: openSocket $

*

* $Description: open a TCP/IP socket connection to the instrument $
*

* $Paraneters: $

* (const char *) hostname Network name of instrunent.

* This can be in dotted deci mal notation.

110 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

* (int) portNunber The TCP/IP port to talk to.

* Use 5025 for the SCPl port.

* $Ret urn: (int) Afile descriptor sinilar to open(l).$
* $Errors: returns -1 if anything goes wong $

*

***/

SOCKET openSocket (const char *hostnane, int port Nunber)
{

struct hostent *hostPtr;
struct sockaddr_in peeraddr _in;
SOCKET s;

nenset (&peeraddr _in, 0, sizeof(struct sockaddr_in));

/***/

/* map the desired host name to internal form */
/***/
host Ptr = get host bynane(host nare) ;
if (hostPtr == NULL)
{
fprintf(stderr,"unable to resol ve hostnane '%’\n", hostnane);
return | NVALI D_SCOCKET;

/*******************/

/* create a socket */
/*******************/
s = socket (AF_I NET, SOCK _STREAM 0);
if (s == | NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to '%’': %\n",
host nane, strerror(errno));
return | NVALI D_SCOCKET;

Chapter 10 111

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (UNIX)

nmencpy(&peeraddr _i n.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_|ength);
peeraddr _in.sin_famly = AF_| NET;
peeraddr _in.sin_port = htons((unsigned short)port Nunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,
si zeof (struct sockaddr_in)) == SOCKET_ERRCR)

{
fprintf(stderr,"unable to create socket to '%’: %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

/***

> $Function: commandl nstrunent $

* $Description: send a SCPl command to the instrument.$

* $Parameters: $

* (FILe *) file pointer associated with TCP/|P socket.
* (const char *command) . . SCPI conmmand string.

* $Return: (char *) apointer to the result string.

*

* $Errors: returns O if send fails $

*

***/

i nt commandl nst runment (SOCKET sock,

const char *conmmand)

112 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

int count;

[* fprintf(stderr, "Sending \"%\".\n", command); */
if (strchr(conmand, '\n’) == NULL) {

fprintf(stderr, "Warning: mssing new ine on command %.\n", conmand);

count = send(sock, command, strlen(comand), 0);
if (count == SOCKET_ERRCR) {
return COMVAND ERRCR

return NO OVD ERRCR;

/**

* recv_line(): simlar to fgets(), but uses recv()

**/
char * recv_line(SOCKET sock, char * result, int nmaxLength)
{
#i f def W NSOCK
int cur_length = 0;
int count;
char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/[* Get a byte into ptr */

count = recv(sock, ptr, 1, 0);

[* If no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

Chapter 10 113

Programming Examples
Using C Over Socket LAN (UNIX)

[* If we hit a newline, stop. */

if (*ptr =="\n") {
ptr++;
err = 0;
br eak;
}
ptr++;
}
*ptr = \0";
if (err) {
return NULL;
} else {
return result;
}
#el se
wn /***
[<5]
g‘ * Sinpler UNIX version, using file I/O recv() version works too.
IS
5 * This denonstrates how to use file |I/O on sockets, in UNI X
g’ ***/
S .)
s FILE * instFile;
S
:‘,’ instFile = fdopen(sock, "r+");
a if (instFile == NULL)
{
fprintf(stderr, "Unable to create FILE * structure : %\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endi f

}

114 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

/****************'k'k'k**

*

> $Function: queryl nstrunent $

*

* $Description: send a SCPI command to the instrunent, return a response.$

* $Paranmeters: $

* (FHLe*y file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maximumsize of result array in bytes.

*

* $Return: (long) The nunber of bytes in result buffer.

*

* $Errors: returns 0 if anything goes wong. $

***/

| ong queryl nst runent (SOCKET sock,

const char *conmand, char *result, size_t naxLength)

| ong ch;

char tnp_buf[8];

| ong resul tBytes = O;
int command err;

int count;

/***

* Send conmand to anal yzer

***/

command_err = conmandl nst runent (sock, command);
if (command_err) return COMWAND ERRCR,

/***

* Read response from anal yzer

Chapter 10 115

Programming Examples
Using C Over Socket LAN (UNIX)
*********'k'k'k**/

count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];

if ((count < 1) || (ch ==ECQF) || (ch=="\n"))

{
result ='\0; / null ternminate result for ascii */
return O;

}

/* use a do-while so we can break out */
do
{
if (ch="#)
{
/* binary data encountered - figure out what it is */
 ong nunDi gits;
| ong nunBytes = O;
/* char length[10]; */

count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];
if ((count < 1) || (ch == ECF)) break; /* End of file */

if (ch<’'0 || ch>"9) break; /* unexpected char */

nunDi gits = ch - '0;

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

if (nunDigits)

{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunD gits, 0);
result[count] =0; /* null termnate */
nunBytes = atol (result);

}

i f (nunBytes)

116 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

{
resul tBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)nunBytes, 0);
resul t Bytes += rcount;
resul t += rcount; /* Advance pointer */
} while (resultBytes < nunBytes);
/*******************-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k-k***********************
* For LAN dunps, there is always an extra trailing newine
* Since thereis no EQ line. For ASCI dunps this is
* great but for binary dunps, it is not needed.
-k**********************************/
if (resultBytes == nunBytes)
{
char j unk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we read only a line feed */
do
{
if (recv_line(sock, result, nmaxLength) == NULL) break;
if (strlen(result)==1 & *result == "'\n") break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{

Chapter 10 117

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (UNIX)

/[* ASCI| response (not a binary bl ock) */
*result = (char)ch;

if (recv_line(sock, result+1, maxLength-1) == NULL) return O;

/* REMOVE trailing newine, if present. And termnate string. */

resul tBytes = strlen(result);

if (result[resultBytes-1] == '\n’") resultBytes -= 1,
result[resultBytes] = '\0";
}
} while (0);

return resul t Bytes;

/***

*

> $Function: showkErrors$

* $Description: Query the SCPl error queue, until enpty. Print results. $

* $Return: (void)

***/

voi d showError s(SOCKET sock)

{
const char * command = " SYST: ERR?\ n";

char result_str[256];

do {

queryl nstrunent (sock, command, result_str, sizeof(result_str)-1);

/**

* Typical result_str:

118 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

* -221,"Settings conflict; Frequency span reduced."
* +0,"No error”
* Don’t bot her decodi ng.
********~k~k~k-k-k-k-k-k-k-k-k-k-k-k-k****************-k-k-k-k-k-k*********************/
if (strncrp(result_str, "+0,", 3) == 0) {
/* Matched +0,"No error" */
br eak;
}
puts(result_str);
} while (1);

/***
*

> $Function: isQery$

*

* $Description: Test current SCPI command to see if it a query. $

*

* $Return: (unsigned char) . . . non-zero if coomand is a query. O if not.

*

***/

unsi gned char isQuery(char* cnd)
{

unsigned char q = 0 ;

char *query ;

/***/

/[* if the coomand has a '?" in it, use querylnstrument. */

/* otherw se, sinply send the command. */
/* Actually, we nust a little nore specific so that */
/* marker value queries are treated as conmands. */
/* Exanpl e: SENS: FREQ CENT (CALCL: MARK1: X?) */

/***/

if ((query = strchr(cmd,”?")) !'= NULL)

Chapter 10 119

Programming Examples
Using C Over Socket LAN (UNIX)

{
/* Make sure we don’'t have a marker val ue query, or
* any command with a '? followed by a ')’ character.
* This kind of comrand is not a query fromour point of view
* The anal yzer does the query internally, and uses the result.
*/
quer y++ ; [* bunmp past '?" */
whil e (*query)
{
if (*query ==" ") /* attenpt to ignore white spc */
query++ ;
el se break ;
}
if (*query !'=")")
{
q=1;
}
}
return q ;

/***

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

*

> $Function: mai n$

*

* $Description: Read command |ine argunents, and tal k to anal yzer.

Send query results to stdout. $

* $Return: (int) . . . non-zero if an error occurs

*

***/

nt main(int argc, char *argv[])

120 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

SOCKET i nst Sock;

char *charBuf = (char *) malloc(l NPUT_BUF_SI ZE);
char *basenare;

int chr;

char command[1024] ;

char *destinati on;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber = 0;

basenane = strrchr(argv[0], '/');
i f (basenane != NULL)

basenane++ ;
el se

basenane = argv[0];

while ((chr = getopt(argc, argv,"qune")) !'= EOF)
switch (chr)

{
case 'q': quiet = 1; break;
case 'n': nunber = 1; break ;
case 'e’': showerrs = 1; break ;
case 'u':
case '?': usage(basenane); exit(1)
}

/* now | ook for hostname and optional <conmand> */
if (optind < argc)
{

destination = argv[optind++]

strcpy(comand, "");

if (optind < argc)

{

while (optind < argc) {

[* <host name> <command> provi ded; only one conmand string */

Chapter 10 121

Programming Examples
Using C Over Socket LAN (UNIX)

strcat (command, argv[optind++]);
if (optind < argc) {

strcat (comand, " ");
} else {

strcat (command, "\n");

}
}
}
el se
{
/* Only <host nane> provided; input on <stdin> */
strcpy(comand, "");
if (optind > argc)
{
usage(basenane) ;
exit(1);
}
}
3 }
g‘ el se
IS
) {
E’ /* no host nane! */
% usage(basenane) ;
? exit(1);
o }

/**/

/* open a socket connection to the instrunent */
/**/
#i f def W NSOCK
if (init_wnsock() '=0) {
exit(1);
}
#endi f /* WNSOXK */

122 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

i nst Sock = openSocket (desti nati on, SCPl_PCRT);

if (instSock == | NVALI D_SOCKET) ({
fprintf(stderr, "Unable to open socket.\n");
return 1;

}
[* fprintf(stderr, "Socket opened.\n"); */

if (strlen(comrand) > 0)

{
/**/
/[* if the command has a '?" in it, use querylnstrument. */
/* otherwise, sinply send the command. */
/**/
if (isQery(comrand))
{
| ong buf Byt es;
buf Byt es = queryl nst rument (i nst Sock, comrand,
char Buf, | NPUT_BUF_SI ZF) ;
if (!quiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
commandl nst runent (i nst Sock, comrand) ;
}
}
el se
{

/* read a line from<stdin> */
while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))

Chapter 10 123

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (UNIX)

conti nue ;

if (*charBuf =="'# || *charBuf =="'1"")

conti nue ;

strcat (charBuf, "\n");

if (!quiet)
{
i f (nunber)
{
char nuni 10];
sprintf(num"%: ", nunber);
fwite(num strlen(nun), 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout)
fflush(stdout);

if (isQuery(charBuf))

{
| ong buf Byt es;

/* Put the query response into the sane buffer as the
* command string appended after the null termnator.
*/
buf Byt es = queryl nstrument (i nst Sock, charBuf,
charBuf + strlen(charBuf) + 1,
| NPUT_BUF_SI ZE -strlen(charBuf));
if ('quiet)
{
fwite(" ", 2, 1, stdout)
fwite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout)
fflush(stdout);

124 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

el se

conmandl| nst rument (i nst Sock, char Buf);

}

i f (nunber) nunber++;

if (show.errs) {
showEr r or s(i nst Sock) ;

#i fdef W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOXK */

return O;

/* End of lanio.c */

Chapter 10 125

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using C Over Socket LAN (Windows NT)

Using C Over Socket LAN (Windows NT)

This C programming example (getopt.c) compiles in the Windows NT
environment. In Windows, the routines send() and recv() must be
used, since fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the
response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your Windows NT PC, or from
within a script.

Example:

/************'k'k'k'k***

get opt (30 get opt (30

NAME

getopt - get option letter from argunment vector

SYNCPSI S

int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

extern int optind, opterr, optopt;

DESCRI PTI ON
getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of
recogni zed option letters; if aletter is followed by a colon, the
option is expected to have an argunent that may or nay not be
separated fromit by white space. optarg is set to point to the start

of the option argunment on return from getopt.

126 Chapter 10

Programming Examples
Using C Over Socket LAN (Windows NT)

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argunent), getopt returns ECGF. The special option -- can be used to

delimt the end of the options; ECF is returned, and -- is skipped.

***************'k'k'k***/

#i ncl ude <stdi o. h> /* For NULL, ECF */

#i ncl ude <string. h> [* For strchr() */

char *opt ar g; /* d obal argunent pointer. */

i nt optind = O; /* dobal argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == "\0") {

if (optind == 0)
opt i nd++;

if (optind >=argc || argv[optind][0] !="-' || argv[optind][1] == "\0')
return(ECF) ;

if (strcrmp(argv[optind], "--")==0) {
opt i nd++;
return(ECF);

}

Chapter 10 127

Programming Examples
Using C Over Socket LAN (Windows NT)

scan = argv[optind] +1;

opti nd++;

C = *scan++,

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ == ":") {
fprintf(stderr, "%: unknown option -%\n", argv[O], c);

return(’?);

}
posn++;
if (*posn ==":") {
if (*scan !'="'\0") {
optarg = scan;
scan = NULL;
} else {
5 optarg = argv[optind];
g‘ opt i nd++;
<
) }
g }
IS
IS
o
5—, return(c);
a }

128 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

Using Java Programming Over Socket LAN

This is the Java programming example ScpiDemo.java that
demonstrates simple socket programming with Java. It is written in
Java programming language, and will compile with Java compilers
versions 1.0 and above.

Example:
i nport java.awt.*;
i nport java.io.*;
i nport java.net.*;

i nport java.applet.*;

// This is a SCPI Deno to denonstrate how one can communi cate with the
[/ PSA with a JAVA capable browser. This is the

[/l NMain class for the SCPl Deno. This applet will need Socks.class to
/1 support the I/0O conmands and a Scpi Deno. htnmi for a browser to | oad
/1 the applet.

/1 To use this applet, either conpile this applet with a Java conpil er
/1l or use the existing conpiled classes. Use an anonynous FTP to copy
/1 Scpi Deno. cl ass, Socks. cl ass and Scpi Deno. htnmi to the instrunent’s
/1 pub directory.

/1 Load up a browser on your conputer and do the follow ng:

/1 1. Load this URL in your browser:

/1 ftp://<Your instrument's | P address or nane>/ pub/ Scpi Deno. ht i

/1 2. There should be two text wi ndows that show in the browser:

/1 The top one is the SCPI response text area for any response

/1 com ng back fromthe instrunent. The bottomone is for you

/1 to enter a SCPI command. Type in a SCPl command and hit enter.
/1 I f the command expects a response, it will showup in the top

/1 w ndow.

public class Scpi Denb extends java.appl et. Appl et inplenents Runnabl e {

Thr ead responseThr ead,;
Socks sck;
URL appl et Base;

TextField scpi Command = new Text Fi el d();

Chapter 10 129

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

Programming Examples
Using Java Programming Over Socket LAN

Text Area scpi Response = new Text Area(10, 60);
Panel sout hPanel = new Panel ();
Panel p;

/1l Initialize the applets

public void init() {

Set upSocket s();
Set upPanel s();

/1 Set up font type for both panels

Font font = new Font ("Ti nesRoman", Font.BOLD, 14);

scpi Response. set Font (font);

scpi Command. set Font (font);

scpi Response. appendText ("SCPI Denmo Program Response nessages\n");

scpi Response. appendText ("---------------------m oo \n");

/1 This routine is called whenever the applet is actived
public void start() {

/'l Open the sockets if not already opened

sck. QpenSocket s() ;

[l Start a response thread

St art ResponseThread(true);

[/ This routine is called whenever the applet is out of scope
/1 i.e. mnize browser
public void stop() {

I/l Aose all |ocal sockets

sck. A oseSocket s();

/1 Kill the response thread

St art ResponseThr ead(f al se);

/1 Action for sending out scpi commands

130 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

/1l This routine is called whenever a conmand is received fromthe
/1 SCPl conmand panel .
publ i c bool ean action(Event evt, bject what) {
/1 1f this is the correct target
if (evt.target == scpi Command) {
/1 Get the scpi conmand
String str = scpi Conmand. get Text ();
I/l Send it out to the Scpi socket
sck. Scpi Wi telLine(str);
String tenpStr = str.toLowerCase();
/1 If command str is "syst:err?", don't need to send another one.
if ((tenpStr.indexOF("syst") == -1) ||
(tempStr.indexOt ("err") == -1)) {
/1 Query for any error
sck. Scpi WiteLine("syst:err?");
}

return true;

}

return fal se;

/1l Start/Stop a Response thread to display the response strings
private void StartResponseThread(bool ean start) {
if (start) {
[/l Start a response thread
responseThread = new Thread(this);

responseThread. start();

}

el se {
/1 Kl the response thread
responseThread = nul | ;

}

/'l Response thread running

public void run() {

Chapter 10 131

Programming Examples
Using Java Programming Over Socket LAN

String str =""; [/ Initialize str to null

/] dear the error queue before starting the thread
/[l in case if there’s any error messages fromthe previous actions
while (str.index("No error") == -1) {

sck. Scpi WiteLine("syst:err?");

str = sck. Scpi ReadLi ne();

/] Start receiving response or error nessages
while(true) {
str = sck. Scpi ReadLi ne();
if (str!=nul) {
/1 1f response messages is "No error", do no display it,
/1 replace it with "OK' instead.
if (str.equals("+0,\"No error\"")) {
str = "OK*;
}
/1 D splay any response nmessages in the Response panel

scpi Response. appendText (str+"\n");

/1 Set up and open the SCPl sockets

n
@
o
IS
<
x
i
()
=
IS
IS
©
S
)
o
S
o

private voi d SetupSockets() {
/'l Get server url
appl et Base = (URL) get CodeBase();
/1 Qpen the sockets

sck = new Socks(appl et Base);

/1 Set up the SCPI conmand and response panel s
private voi d SetupPanel s() {

/1 Set up SCPI command panel

sout hPanel . set Layout (new G'i dLayout (1, 1));

132 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

p = new Panel ();

p. set Layout (new Bor der Layout ()) ;

p. add("West", new Label ("SCPI command:"));
p. add(" Center", scpi Command);

sout hPanel . add(p) ;

/'l Set up the Response panel

set Layout (new Bor der Layout (2, 2));
add("Center", scpi Response);
add(" Sout h", sout hPanel);

/1 Socks class is responsible for open/cl ose/read/ wite operations
/1 fromthe predefined socket ports. For this exanpl e program
/1 the only port used is 5025 for the SCPI port.
cl ass Socks extends java. appl et. Appl et {
/'l Socket |nfo
/!l To add a new socket, add a constant here, change MAX NUM OF SOCKETS
/1 then, edit the constructor for the new socket.
public final int SCPI=0;
private final int MAX NUM OF SOCKETS=1;

/1 Port nunber
/1 5025 is the dedicated port nunber for E4440A Scpi Port
private final int SCPl_PORT = 5025;

/'l Socket info

private URL appl et Base;

private Socket[] sock = new Socket [MAX_NUM OF SOCKETS] ;

private Datal nputStreanj] sockln = new Datal nput St reanf MAX_NUM OF_SOCKETS] ;
private PrintStrean{] sockQut = new Print Streanf MAX_ NUM O _SOCKETS] ;
private int[] port = new int[MAX_NUM OF SOCKETS] ;

private bool ean[] sockQen = new bool ean[MAX_NUM OF SOCKETS] ;

Chapter 10 133

Programming Examples
Using Java Programming Over Socket LAN

/1 Constructor
Socks(URL appl et B)

{
appl et Base = appl et B;
/1 Set up for port array.
port[SCPI] = SCPl _PORT;
[l Initialize the sock array
for (int i =0; i < MXNUW O SOCKETS; i++) {
sock[i] = null;
sockln[i] = null;
sockQut[i] = null;
sockQpen[i] = fal se;
}
}

[***** Sockects open/cl ose routi nes

4 /1 Qpen the socket(s) if not already opened
g‘ public voi d QpenSocket s()
z (
= try {
E /1 Cpen each socket if possible
% for (int i =0; i < MX NMGO-_SOCKETS; i++) {
o if (!'socken[i]) {
sock[i] = new Socket (appl et Base. get Host (), port[i]);
sockl n[i] = new Datal nput Strean(sock[i].getlnputStrean());
sockQut[i] = new PrintStrean(sock[i].getQutputStrean());
if ((sock[i] !'=null) & (sockin[i] !'=null) &
(sockQut[i] '=null)) {
sockQpen[i] = true;
}
}
}
}

134 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

catch (1 OException e) {
Systemout. println("Sock, Open Error "+e.get Message());

/!l dose the socket(s) if opened

public void O oseSocket (int s)

{

try {
if (sockQpen[s] == true) {

/Il wite blank line to exit servers elegantly
sockQut[s].printlin();
sockQut[s].flush();
sockl n[s].close();
sockQut[s].cl ose();
sock[s].cl ose();

sockQpen[s] = fal se;

}
catch (1 Oexception e) {

Systemout. println("Sock, dose Error "+e.get Message());

// dose all sockets

public void O oseSockets()
{

for (int i=0; i < MAX_NUM OF SOCKETS; i++) {
d oseSocket (i) ;

/1 Return the status of the socket, open or close.

publ i ¢ bool ean SockQpen(int s)
{

return sockQpen[s];

Chapter 10 135

Programming Examples
Using Java Programming Over Socket LAN

[Fxxxxxkxxrkxx Gocket 1/ O routines.

[1*** 1/Oroutines for SCPI socket

/1 Wite an ASCIl string with carriage return to SCPI socket
public void Scpi WiteLine(String command)

{
if (SockQpen(SCPl)) {
sockQut [SCPI] . pri nt | n(command) ;
sockQut [SCPI] . fl ush();
}
}

I/l Read an ASCI| string, terninated with carriage return from SCPl socket
public String Scpi ReadLi ne()

{
E try {
=3 if (SockOpen(SCPI)) {
IS
5 return sockl n[SCPI].readLine();
(@)
£ }
IS
£ }
©
:‘,’ catch (1 CException e) {
a Systemout.println("Scpi Read Line Error "+e.get Message());
}
return nul | ;
}

/! Read a byte from SCPl socket
public byte Scpi ReadByte()
{
try {
if (SockOpen(SCPl)) {
return sockl n[SCPI].readByte();

136 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

}
catch (I Cexception e) {

Systemout. println("Scpi Read Byte Error "+e.get Message());
}

return O;

Chapter 10 137

Programming Examples
Using the VXI Plug-N-Play Driver in LabView

Using the VXI Plug-N-Play Driver in LabView

This example shows how to use the VXI plug and play driver over LAN
in LabView 6i. The user must have Version K of the Agilent 10 libraries
installed alone or installed side-by-side with the National Instruments
10 libraries. Also, the user must first import the VXI plug and play
driver into LabView before running this example. The instrument
drivers are available at:

http://ww. agi |l ent. com find/iolib (Click on instrument drivers.)
This example:

1. Opens a VXI 11.3 Lan connection to the instrument

2. Sets the Center Frequency to 1 GHz

3. Queries the instrument’s center frequency

4

. Closes the Lan connection to the instrument

NOTE Substitute your instruments |.P. address for the one used in the
example.
Example:
(7] Igay e
@ Ik pza.vi Diagram
g’ File Edit Operate Toolz Browse ‘Window Help
© — —
X @)l@l @IEI|I#EI|E’|Dﬁ | 13pt Application Font |T”=F"I .u.vl|f§'lvl
(@] -
é TCPIPO:141.121.88.193: NS TR —l
e —
< [aged444ua Initislize. vi]
a AGEYY4H
o g ' [ag=444xa Set Center Frequency.s+
o Initializg] T . .
agedddua Get Center Freguency. vi agedd4na Cloze.wi

Config ANEAT AGERTE
s 1 -

Heasure

-I E+9 Closg
center frequency g

138 Chapter 10

INndex

Numerics
10 MHz output, turning on 10, 46

A
ACP power measurements 66
ACPR
programming example 90
Agilent Technologies URL 2
alignments
programming example 93
analyzer
distortion 41
functions, basic 6
functions, detailed 6
attenuation
input, reducing 17
optimal power at mixer, setting 45
setting automatically 18
setting manually 17
averaging
description 16
types 23
averaging, log 21

B

binary trace data, programming example 96
bursted signa power measurements 59

C
C programming, socket LAN 106, 126
CALC

DATA
COMP? programming example
100
calibration

programming example 93
CCDF statistical power measurements 63
center frequency

adjusting 14

moving signal to 17

step size, setting with marker 14
clear-write mode, using 37
communication systems, distortion in 40
compressing measurement data, program-
ming example 100

D
data
comparing two traces 42
deltamarker
comparing two traces 42
using 10, 12
detectors, average 21
digital signal power measurements
ACP 66
burst signals 59
CCDF 63
MCP 70
overview 58
directories
creating 75
deleting all on floppy 76
documentation assumptions 74
disk
deleting all files and directories (flop-
py) 76
deleting onefile 76
distortion measurements
analyzer products 41
harmonic 45
overview 40
TOI products 43
documentation
assumptions, file knowledge 74
assumptions, preset 6
basic operation 6
function details 6
dynamic range graph 46

E

example
ACPR measurement 90
alignment 93
saving instrument state 86
saving trace data 96
using markers 83

examples
100 kHz separation, resolving 28
average detector, using 21
averaging, trace 23
comparing signals, overview 8
distortion

139

Index

from analyzer 41
harmonic 45
overview 40
TOI 43
harmonic distortion 45
harmonics, measuring 45
input attenuation, reducing 17
noise
at single frequency 51
overview 50
signal-to-noise 53
total power 55
power of digital signals
ACP 66
burst signals 59
CCDF 63
MCP 70
overview 58
resolution bandwidth, reducing 19
signals
equal-amplitude, separating 28
low-level, overview 16
off-screen, comparing 9, 14
on-screen, comparing 8, 10, 12
Separating 28
small, separating from larger 30
tracking 35
tracking, overview 34
source stability, measuring 37
trace averaging 23

files
copying 80
deleting all on floppy 76
deleting one 76
documentation assumptions 74
loading 78
renaming 79

floppy disk
deleting all files and directories 76
deleting one file 76

frequency
center frequency, adjusting 14
center step size, setting 14

G
graph, dynamic range 46

H

harmonic distortion
measuring low-level signals 9

140

harmonics
distortion example 45
measuring 45
harmonics, measuring 45

I
input attenuation, reducing 17
instrument states

programming example 86
intermodulation distortion, third-order 43

J
Java program example 129

L
LabView program example 138
LAN
C program
example 106
C program example 126
Java program example 129
log averaging 21
low-level signals
harmonics, measuring 9
input attenuation, reducing 17
resolution bandwidth, reducing 19
sweep time, reducing 21
trace averaging 23

M
markers
center frequency step, setting 14
center frequency, moving to 17
comparing two traces 42
delta marker
constant-level signals 10
harmonic distortion products 42
varying-level signals 12
deltapair, using 12
marker delta, using 10
peak search, using 17
programming example 83
reference annotation, reading 14
turning off 10, 13
maximum hold, using 37
MCP power measurements 70
measurement
programming example 90
measurements
comparing signals, overview 8
digital signal power
overview 58

141

Index

distortion
from analyzer 41
harmonic 45
overview 40
TOI 43
harmonics 45
noise
at single frequency 51
overview 50
total power 55
power of digital signals
ACP 66
burst signals 59
CCDF 63
MCP 70
separating signals (equal amplitude) 28
separating signals (unequal amplitude) 30
signal-to-noise 53
source stability 37
tracking signals
overview 34
procedure 35
two signals (not same screen) 14
two signals (same screen) 10, 12
mixer input level, setting 44

N

Noi se measurements
at single frequency 51
overview 50
signal-to-noise 53
sweep time, reducing 21
total power 55

@)
openSocket 106, 126
operation, basics 6
operation, details 6
output (10 MHz), turning on 10, 46
overviews
comparing two signals 8
distortion 40
low-level signal 16
noise 50
power of digital signals 58
resolving signals 26
stability 34

P
peak search programming example 83
peak search, using 10, 17

Plug-N-Play driver program example 138

142

power measurements of digital signals
ACP 66
burst signals 59
CCDF 63
MCP 70
power of digital signal measurements
overview 58
preset, assumption in documentation 6
program example
C 106, 126
Java 129
LabView 138
socket LAN 106, 126, 129
VXI Plug-N-Play driver 138
programming example
ACPR measurement 90
alignments 93
saving instrument state 86
saving trace data 96
using CALC
DATA
COMP? 100
using markers 83

R
RBW selections 19
reducing measurement data, programming example 100
resolution bandwidth
adjusting 19
effects of narrow 45
setting 44

S

sample program
ACPR measurement 90
alignment 93
saving instrument state 86
saving trace data 96
using markers 83

saving trace data programming example 96

signal track, turning on 35

signals 35
equal amplitude, separating 28
low-level, overview 16
maximum hold, using 37
off-screen, comparing 9, 14
on-screen, comparing 8, 10, 12
resolving, overview 26
separating, overview 26
small, separating from larger 30
stability, overview 34

signal-to-noise measurement 53

143

Index

single sweep 10
socket LAN
C program example 106, 126
Java program example 129
states
programming example 86
step size, setting (center frequency) 14
sweep time and sensitivity trade off 19
sweep time, changing 21
sweep, single 10

T
TOI distortion

example 43

in non-linear systems 40
trace data programming example 96
traces

clearing 37

comparing two 42

maximum hold 37

selecting 37

U
URL (Agilent Technologies) 2

\%

VX1 Plug-N-Play driver program example 138

144

	Measurement Guide & Programming Examples
	Table of Contents
	1� Using This Document
	2� Comparing Two�Signals: Frequency�and�Amplitude�
	Comparing Signals on the Same Screen
	Signals with Constant Levels (using�Marker�Delta)
	Signals with Varying Levels (using�Delta�Pair)

	Comparing Signals

	3� Measuring a Low-Level Signal
	Reducing Input Attenuation
	Decreasing the Resolution Bandwidth
	Using the Average Detector and Increased�Sweep Time
	Trace Averaging

	4� Resolving Signals
	Separating Equal-Amplitude Signals
	Finding a Small Signal Hidden by a�Larger�Signal

	5� Tracking a Drifting Signal
	Tracking a Signal
	Measuring a Source’s�Drift

	6� Making Distortion�Measurements
	Identifying Distortion from the Analyzer
	Identifying Harmonic Distortion Products
	Measuring the Analyzer’s Third-Order�Intermodulation�Distortion

	Measuring Harmonics and Harmonic�Distortion

	7� Measuring Noise Signals
	Measuring Noise at a Single Frequency
	Measuring Signal-to-Noise Levels
	Measuring Total Noise Power

	8� Measuring the Power of Digital Signals
	Making Power Measurements on Burst Signals
	Making Statistical Power Measurements (CCDF)
	Making Measurements of Adjacent Channel Power (ACP)
	Making Measurements of Multi-Carrier Power (MCP)

	9� Managing Files
	Creating a Directory (or sub-directory)
	Deleting Files
	Deleting One File
	Deleting All Files and Directories from a Floppy Disk

	Loading a File
	Renaming a File
	Copying a File

	10� Programming Examples
	Examples Included:
	Information About These Examples

	Using Marker Peak Search
	Example:

	Saving and Recalling Instrument State Data
	Example:

	Making an ACPR Measurement in cdmaOne
	Example:

	Performing Alignments and Getting Pass/Fail Results
	Example:

	Saving Binary Trace Data (Requires Option B7J)
	Example:

	Using the CALCulate:DATA:COMPress? Command (Requires Option B7J)
	Example:

	Using C Over Socket LAN (UNIX)
	Example:

	Using C Over Socket LAN (Windows NT)
	Example:

	Using Java Programming Over Socket LAN
	Example:

	Using the VXI Plug-N-Play Driver in LabView
	Example:

	Index

